Living fossil
A living fossil is a term for an
Living fossils exhibit stasis (also called "bradytely") over geologically long time scales. Popular literature may wrongly claim that a "living fossil" has undergone no significant evolution since fossil times, with practically no molecular evolution or morphological changes. Scientific investigations have repeatedly discredited such claims.[1][2][3]
The minimal superficial changes to living fossils are mistakenly declared as an absence of evolution, but they are examples of
The term is currently deprecated among paleontologists and evolutionary biologists.
Characteristics
Living fossils have two main characteristics, although some have a third:
- Living organisms that are members of a taxon that has remained recognizable in the fossil record over an unusually long time span.
- They show little morphological divergence, whether from early members of the lineage, or among extant species.
- They tend to have little taxonomic diversity.[5]
The first two are required for recognition as a living fossil; some authors also require the third, others merely note it as a frequent trait.
Such criteria are neither well-defined nor clearly quantifiable, but modern methods for analyzing evolutionary dynamics can document the distinctive tempo of stasis.[6][7][8] Lineages that exhibit stasis over very short time scales are not considered living fossils; what is poorly-defined is the time scale over which the morphology must persist for that lineage to be recognized as a living fossil.
The term living fossil is much misunderstood in popular media in particular, in which it often is used meaninglessly. In professional literature the expression seldom appears and must be used with far more caution, although it has been used inconsistently.[9][10]
One example of a concept that could be confused with "living fossil" is that of a "Lazarus taxon", but the two are not equivalent; a Lazarus taxon (whether a single species or a group of related species) is one that suddenly reappears, either in the fossil record or in nature, as if the fossil had "come to life again".[11] In contrast to "Lazarus taxa", a living fossil in most senses is a species or lineage that has undergone exceptionally little change throughout a long fossil record, giving the impression that the extant taxon had remained identical through the entire fossil and modern period. Because of the mathematical inevitability of genetic drift, though, the DNA of the modern species is necessarily different from that of its distant, similar-looking ancestor. They almost certainly would not be able to cross-reproduce, and are not the same species.[12]
The average
Coelacanths disappeared from the fossil record some 80 million years ago (in the upper Cretaceous period) and, to the extent that they exhibit low rates of morphological evolution, extant species qualify as living fossils. It must be emphasised that this criterion reflects fossil evidence, and is totally independent of whether the taxa had been subject to selection at all, which all living populations continuously are, whether they remain genetically unchanged or not.[14]
This apparent stasis, in turn, gives rise to a great deal of confusion – for one thing, the fossil record seldom preserves much more than the general morphology of a specimen. To determine much about its physiology is seldom possible; not even the most dramatic examples of living fossils can be expected to be without changes, no matter how persistently constant their fossils and the extant specimens might seem. To determine much about
Some living fossils are taxa that were known from palaeontological fossils before living representatives were discovered. The most famous examples of this are:
- Coelacanthiform fishes (2 species)
- Metasequoia, the dawn redwooddiscovered in a remote Chinese valley (1 species)
- Glypheoid lobsters (2 species)
- Mymarommatid wasps (10 species)
- Eomeropid scorpionflies (1 species)
- Jurodid beetles (1 species)
- Soft sea urchins (59 species)
All the above include taxa that originally were described as fossils but now are known to include still-extant species.
Other examples of living fossils are single living species that have no close living relatives, but are survivors of large and widespread groups in the fossil record. For example:
- Ginkgo biloba
- Syntexis libocedrii, the cedar wood wasp
- dinocysts: occasionally calcareous cell remnants)
All of these were described from fossils before later being found alive.[15][16][17]
The fact that a living fossil is a surviving representative of an archaic lineage does not imply that it must retain all the "primitive" features (
Some living fossils are relicts of formerly diverse and morphologically varied lineages, but not all survivors of ancient lineages necessarily are regarded as living fossils. See for example the uniquely and highly autapomorphic oxpeckers, which appear to be the only survivors of an ancient lineage related to starlings and mockingbirds.[18]
Evolution and living fossils
The term living fossil is usually reserved for species or larger clades that are exceptional for their lack of morphological diversity and their exceptional conservatism, and several hypotheses could explain morphological stasis on a geologically long time-scale. Early analyses of evolutionary rates emphasized the persistence of a taxon rather than rates of evolutionary change.[19] Contemporary studies instead analyze rates and modes of phenotypic evolution, but most have focused on clades that are thought to be adaptive radiations rather than on those thought to be living fossils. Thus, very little is presently known about the evolutionary mechanisms that produce living fossils or how common they might be. Some recent studies have documented exceptionally low rates of ecological and phenotypic evolution despite rapid speciation.[20] This has been termed a "non-adaptive radiation" referring to diversification not accompanied by adaptation into various significantly different niches.[21] Such radiations are explanation for groups that are morphologically conservative. Persistent adaptation within an adaptive zone is a common explanation for morphological stasis.[22] The subject of very low evolutionary rates, however, has received much less attention in the recent literature than that of high rates.
Living fossils are not expected to exhibit exceptionally low rates of molecular evolution, and some studies have shown that they do not.[23][24] For example, on tadpole shrimp (Triops), one article notes, "Our work shows that organisms with conservative body plans are constantly radiating, and presumably, adapting to novel conditions... I would favor retiring the term 'living fossil' altogether, as it is generally misleading."[24] Some scientists instead prefer a new term stabilomorph, being defined as "an effect of a specific formula of adaptative strategy among organisms whose taxonomic status does not exceed genus-level. A high effectiveness of adaptation significantly reduces the need for differentiated phenotypic variants in response to environmental changes and provides for long-term evolutionary success."[25]
The question posed by several recent studies pointed out that the morphological conservatism of coelacanths is not supported by paleontological data.[26][27] In addition, it was shown recently that studies concluding that a slow rate of molecular evolution is linked to morphological conservatism in coelacanths are biased by the a priori hypothesis that these species are 'living fossils'.[1] Accordingly, the genome stasis hypothesis is challenged by the recent finding that the genome of the two extant coelacanth species L. chalumnae and L. menadoensis contain multiple species-specific insertions, indicating transposable element recent activity and contribution to post-speciation genome divergence.[28] Such studies, however, challenge only a genome stasis hypothesis, not the hypothesis of exceptionally low rates of phenotypic evolution.
History
The term was coined by
All fresh-water basins, taken together, make a small area compared with that of the sea or of the land; and, consequently, the competition between fresh-water productions will have been less severe than elsewhere; new forms will have been more slowly formed, and old forms more slowly exterminated. And it is in fresh water that we find seven genera of Ganoid fishes, remnants of a once preponderant order: and in fresh water we find some of the most anomalous forms now known in the world, as the Ornithorhynchus and Lepidosiren, which, like fossils, connect to a certain extent orders now widely separated in the natural scale. These anomalous forms may almost be called living fossils; they have endured to the present day, from having inhabited a confined area, and from having thus been exposed to less severe competition.
— On the Origin of Species, 1859[29]
Other definitions
Long-enduring

A living taxon that lived through a large portion of
The Australian lungfish (Neoceratodus fosteri), also known as the Queensland lungfish, is an example of an organism that meets this criterion. Fossils identical to modern specimens have been dated at over 100 million years old. Modern Queensland lungfish have existed as a species for almost 30 million years.[30] The contemporary nurse shark has existed for more than 112 million years, making this species one of the oldest, if not actually the oldest extant vertebrate species.
Resembles ancient species
A living taxon morphologically and/or physiologically resembling a fossil taxon through a large portion of geologic time (morphological stasis).[31]
Retains many ancient traits
A living taxon with many characteristics believed to be primitive. This is a more neutral definition. However, it does not make it clear whether the taxon is truly old, or it simply has many plesiomorphies. Note that, as mentioned above, the converse may hold for true living fossil taxa; that is, they may possess a great many derived features (autapomorphies), and not be particularly "primitive" in appearance.
Relict population
Any one of the above three definitions, but also with a
Some paleontologists believe that living fossils with large distributions (such as Triops cancriformis) are not real living fossils. In the case of Triops cancriformis (living from the Triassic until now), the Triassic specimens lost most of their appendages (mostly only carapaces remain), and they have not been thoroughly examined since 1938.
Low diversity
Any of the first three definitions, but the clade also has a low taxonomic diversity (low diversity lineages).
The two living species thus seem to represent an entirely extinct and (as Passerida go) rather ancient lineage, as certainly as this can be said in the absence of actual fossils. The latter is probably due to the fact that the oxpecker lineage never occurred in areas where conditions were good for fossilization of small bird bones, but of course, fossils of ancestral oxpeckers may one day turn up enabling this theory to be tested.
Operational definition
An operational definition was proposed in 2017, where a 'living fossil' lineage has a slow rate of evolution and occurs close to the middle of morphological variation (the centroid of morphospace) among related taxa (i.e. a species is morphologically conservative among relatives).
Examples
Some of these are informally known as "living fossils".
Bacteria
- Cyanobacteria – the oldest living fossils, emerging 3.5 billion years ago. They exist as single bacteria or in the form of stromatolites, layered rocks produced by colonies of cyanobacteria.[37]
Protists
- The dinoflagellate †Calciodinellum operosum.[15]
- The dinoflagellate †Dapsilidinium pastielsii.[17]
- The dinoflagellate †Posoniella tricarinelloides.[16]
- The coccolithophore Tergestiella adriatica.[38]
Plants
- Moss
- Pteridophytes
- Horsetails– Equisetum
- Lycopods
- ferns
- Gymnosperms
- Conifers
- Agathis – kauri in New Zealand, Australia and the Pacific and almasiga in the Philippines
- Araucaria araucana – the monkey puzzle tree (as well as other extant Araucaria species)
- Metasequoia – dawn redwood (Cupressaceae; related to Sequoia and Sequoiadendron)
- Sciadopitys – a unique conifer endemic to Japan known in the fossil record for about 230 million years.
- Taiwania cryptomerioides – one of the largest tree species in Asia.
- Wollemia tree (Araucariaceae – a borderline example, related to Agathis and Araucaria)[39][40]
- Cycads – although this has been challenged by multiple lines of evidence[41][42]
- Ginkgo tree (Ginkgoaceae)
- Welwitschia
- Angiosperms
- flowering plants
- Magnolia – a genus whose form is little changed since the earliest days of flowering plant evolution in the Cretaceous and possibly earlier[43][1]
- Trapa– water caltrops, seeds, and leaves of numerous extinct species are known all the way back to the Cretaceous.
- Nelumbo – several species of lotus flower are known exclusively from fossils dating back to the Cretaceous.
- Sassafras – many fossils of sassafras are known from the late cretaceous through the late Pleistocene.
- Platanus Sycamore fossils are very abundant throughout the northern hemisphere with several extinct species. Sycamore leaves and fruits are quite common in plant fossils. Sycamores exhibit many primitive features as well such their exfoliating bark which is a result of a lack of elasticity. Platanus occidentalis fossils are known from the Pliocene and the Pleistocene in North America.
- Nyssa Blackgum fossils go way back to the late Cretaceous period. Many extinct species are recorded as well.
- Liriodendron Fossils from the Cretaceous and the Tertiary period are found with many extinct species. Tulip trees at one point were present in Europe during the Cretaceous and the early Paleocene. Liriodendron tulipifera fossils dating from the Pliocene and Pleistocene were discovered at the Chowan formation in North Carolina.
- Liquidambar Sweetgums appeared during the mid-late Cretaceous and several extinct species are found throughout Asia, Europe and North America. The genus was once widespread in Europe and Asia especially during the Miocene. The American sweetgum is a living fossil itself since fossil specimens dating from the Miocene, Pliocene and Pleistocene were discovered in the eastern United States
Fungi
Animals

- Vertebrates



- Mammals
- Aardvark (Orycteropus afer)
- Amami rabbit (Pentalagus furnessi)[44]
- Nesolagus (Asian striped rabbits)
- Chevrotain (Tragulidae)[45]
- Chousingha(Tetracerus quadricornis)
- Elephant shrew (Macroscelidea)[46]
- Giant panda (Ailuropoda melanoleuca)
- Baiji (Lipotes vexillifer) (One living species)
- Ganges river dolphin (Platanista gangetica)[47]
- Indus river dolphin (Platanista minor)[47]
- Hawaiian monk seal (Neomonachus schauinslandi)
- Koala (Phascolarctos cinereus)
- Laotian rock rat (Laonastes aenigmamus)[11]
- Monito del monte (Dromiciops gliroides)
- Monotremes (the platypus and echidna)
- Mountain beaver (Aplodontia rufa)
- Okapi (Okapia johnstoni)
- Opossums (Didelphidae)
- Clouded leopard (Neofelis nebulousa)
- Bush dog (Speothos venaticus)
- Maned wolf (Chrysocyon brachyurus)
- Red panda (Ailurus fulgens)[48]
- Solenodon (Solenodon cubanus and Solenodon paradoxus)
- Shrew opossum (Caenolestidae)
- Spectacled bear (Tremarctos ornatus)
- False killer whale (Pseudorca crassidens)
- Pygmy right whale (Caperea marginata)[49][50]
- Pacarana (Dinomys branickii)
- Rhinoceroses (Rhinocerotidae)[51]
- Tapirs (Tapiridae)[52]
- Birds
- Pelicans (Pelecanus) – form has been virtually unchanged since the Eocene, and is noted to have been even more conserved across the Cenozoic than that of crocodiles.[53]
- Passeriformes.
- Broad-billed sapayoa (Sapayoa aenigma) – One living species. Distinct lineage of Tyranni.
- Bearded reedling (Panurus biarmicus) – One living species. Distinct lineage of Passerida or Sylvioidea.
- Picathartes (rockfowls)
- Coliiformes (mousebirds) – 6 living species in 2 genera. Distinct lineage of Neoaves.
- Hoatzin (Ophisthocomus hoazin) – One living species. Distinct lineage of Neoaves.
- Magpie goose (Anseranas semipalmata) – One living species. Distinct lineage of Anseriformes.
- Sandhill crane (Antigone canadensis) – Oldest living species.
- Cariamae.
- Tinamiformes (tinamous) 50 living species. Distinct lineage of Palaeognathae.
- Screamers (family Anhimidae)
- Reptiles
- gavials, caimans and alligators)
- Pig-nosed turtle (Carettochelys insculpta)
- Hickatee (Dermatemys mawii)
- Snapping turtle (Chelydridae) family
- Sphenodon guntheri)[32]
- Manouria emys)
- Manouria impressa)
- Sunbeam snake (Xenopeltis hainanensis and Xenopeltis unicolor)
- Leatherback sea turtle (Dermochelys coriacea)
- Amphibians
- Cryptobranchus and Andrias)
- Latonia nigriventer)[54]
- Purple frog (Nasikabatrachus sahyadrensis)


- Jawless fish
- Bony fish
- Arowana and arapaima (Osteoglossidae)
- Bowfin (Amia calva)
- Coelacanth (the lobed-finned Latimeria menadoensis and Latimeria chalumnae)
- Gar (Lepisosteidae)
- Queensland lungfish(Neoceratodus fosteri)
- African lungfish(Protopterus sp.)
- Sturgeons and paddlefish (Acipenseriformes)
- Bichir (family Polypteridae)
- Protanguilla palau
- Mudskipper (Oxudercinae)
- Sharks
- Blind shark (Brachaelurus waddi)
- Bullhead shark (Heterodontus sp.)
- Cow shark (sixgill sharks and relatives) (Hexanchidae)
- Elephant shark(Callorhinchus milii)
- Frilled shark (Chlamydoselachus sp.)
- Goblin shark (Mitsukurina owstoni)
- Gulper shark (Centrophorus sp.)
- Invertebrates
- Insects
- Cyatta abscondita (most recent common relative of Atta and Acromyrmexant genera)
- Helorid wasps (1 living genus, 11 extinct genera)
- Mantophasmatodea (gladiators; a few living species)
- Meropeidae (3 living species, 4 extinct)
- Micromalthus debilis (a beetle)
- Mymarommatid wasps (10 living species in genus Palaeomymar)
- Nevrorthidae (3 species-poor genera)
- Nothomyrmecia (known as the 'dinosaur ant')
- scorpionflyrelative)
- Orussidae (parasitic wood wasps; about 70 living species in 16 genera)
- Peloridiidae (peloridiid bugs; fewer than 30 living species in 13 genera)
- Rhinorhipid beetles (1 living species, Triassic origin)
- Rotoitid wasps(2 living species, 14 extinct)
- )
- Syntexis libocedrii (Anaxyelidae cedar wood wasp)
- Tricholepidion gertschi(silverfish with nearest relatives in Eocene)
- Crustaceans
- Glypheidea (2 living species: Neoglyphea inopinata and Laurentaeglyphea neocaledonica)
- Stomatopods (mantis shrimp)
- Polychelida (deep sea blind lobster)
- Triopsidae (also known as tadpole shrimp; notostracan crustaceans)
- Molluscs
- Nautilus pompilius)
- Neopilina – Monoplacophoran
- Slit snail (e.g., Entemnotrochus rumphii)
- Vampyroteuthis infernalis – the vampire squid
- Pleurocerid snails[55]
- Other invertebrates
- Crinoids
- Limulidae)
- Lingula anatina (an inarticulate brachiopod)
- Liphistiidae (trapdoor spiders)
- Onychophorans (velvet worms)
- Rhabdopleura (a hemichordate)
- craniformanbrachiopod)
- Paleodictyon nodosum (unknown)
See also
Notes
Baiji is not officially classified as extinct, but instead critically endangered, possibly extinct and has the unofficial status of functional extinction.[56]
References
- ^ S2CID 2751255.
- PMID 23638400.
- PMID 25454211.
- S2CID 11055926.
- ^ Eldridge, Niles; Stanley, Steven (1984). Living Fossils. New York: Springer-Verlag.
- S2CID 4795316.
- PMID 28565714.
- S2CID 17544335.
- S2CID 206535984.
- .
- ^ S2CID 25506765.
- ^ Mark Carnall (6 July 2016). "Let's make living fossils extinct". The Guardian.
- ISBN 978-0-19-854829-4.
- ^ ISBN 978-81-8356-477-9.
- ^ S2CID 84169394.
- ^ PMID 23850812.
- ^ doi:10.1130/G35456.1.
- ^ PMID 16806992. Archived from the original(PDF) on 2021-10-25. Retrieved 2011-02-20.
- ^ Simpson, George (1953). The Major Features of Evolution. New York: Columbia University Press.
- PMID 16537124.
- .
- S2CID 18734233.
- ^ "Diversification in Ancient Tadpole Shrimps Challenges the Term 'Living Fossil'". Science Daily. 2 April 2013. Retrieved 2013-04-02.
- ^ a b Ed Yong (2 April 2013). "The Falsity of Living Fossils". The Scientist. Retrieved 2015-12-03.
- PMID 25275563.
- S2CID 23069133.
- PMID 16555794.
- ^ On the Origin of Species, 1859, p. 107.
- ^ "Ann Kemps Lungfish - Queensland - Australia". annekempslungfish.com.au. Retrieved 2025-01-18.
- ^ "The University of Chicago Medical Center: Scientists find lamprey a 'living fossil' ". Uchospitals.edu. 26 October 2006. Retrieved 2012-05-16.
- ^ .
- S2CID 134902015.
- S2CID 133726749.
- S2CID 38248823.
- ^ Kazlev, M. Alan (2002). "Palaeos website". Archived from the original on 2006-01-05. Retrieved 2008-07-22.
- ^ "cyanobacteria". ircamera.as.arizona.edu. Archived from the original on 2019-05-03. Retrieved 2019-04-27.
- .
- S2CID 84425685.
- .
- PMID 22021670.
- PMID 38485767.
- ^ Vallejo-Marin, Mario (1 August 2017). "Revealed: the first ever flower, 140m years ago, looked like a magnolia". The Conversation. Retrieved 2023-05-17.
- S2CID 19327437.
- ISBN 978-1-4613-8273-7.
- .
- ^ a b Braulik, Gill; Atkore, Vidyadhar; Shahnawaz Khan, Mohammad; Malla, Sabita (July 2021). "Review of Scientific Knowledge of the Ganges river dolphin" (PDF). World Wildlife Fund: 5.
- ^ "Red panda". National Zoo. Washington, DC: Smithsonian Institution. 22 April 2016. Retrieved 2017-05-04.
Red pandas are considered by many to be living fossils. They have no close living relatives, and their nearest fossil ancestors, Parailurus, lived 3–4 million years ago.
- PMID 23256199.
- ^ "'Extinct' whale found: Odd-looking pygmy whale traced back 2 million years". Christian Science Monitor. 23 April 2012. Retrieved 2012-12-19.
- .
- ISBN 978-1-4613-8273-7.
- . Retrieved 2013-06-10.
- ^ Morelle, Rebecca (4 June 2013). "Rediscovered hula painted frog 'is a living fossil'". BBC News. Retrieved 2013-06-04.
- S2CID 85340338.
- ^ Zhou, Kaiya; Smith, Brian; Randall Reeves (IUCN SSC Cetacean Specialist Group); Braulik, Gillian; Barlow, Jay; Robert Pitman (Protected Resources Division, Southwest Fisheries Science Center/NOAA); Ding Wang (Institute of Hydrobiology, Chinese Academy of Sciences) (20 August 2017). "IUCN Red List of Threatened Species: Lipotes vexillifer". IUCN Red List of Threatened Species. Archived from the original on 2025-01-05.