Logical equality
EQ, XNOR | |
---|---|
Definition | |
Truth table | |
Logic gate | |
Normal forms | |
Disjunctive | |
Conjunctive | |
Zhegalkin polynomial | |
Post's lattices | |
0-preserving | no |
1-preserving | yes |
Monotone | no |
Affine | yes |
Self-dual | no |
Logical equality is a
It is customary practice in various applications, if not always technically precise, to indicate the operation of logical equality on the logical operands x and y by any of the following forms:
Some logicians, however, draw a firm distinction between a functional form, like those in the left column, which they interpret as an application of a function to a pair of arguments — and thus a mere indication that the value of the compound expression depends on the values of the component expressions — and an equational form, like those in the right column, which they interpret as an assertion that the arguments have equal values, in other words, that the functional value of the compound expression is true.[citation needed]
Definition
Logical equality is an
The truth table of p EQ q (also written as p = q, p ↔ q, Epq, p ≡ q, or p == q) is as follows:
Logical equality p q p = q 0 0 1 0 1 0 1 0 0 1 1 1
Alternative descriptions
The form (x = y) is equivalent to the form (x ∧ y) ∨ (¬x ∧ ¬y).
For the operands x and y, the truth table of the logical equality operator is as follows:
y T F x T T F F F T
Inequality
In
This explains why "EQ" is often called "
See also
References
- ISBN 9780789724687.
External links
- Media related to Logical equality at Wikimedia Commons
- Mathworld, XNOR