Methylene (compound)

Source: Wikipedia, the free encyclopedia.
Methylene
Skeletal formula of methylene
Ball-and-stick model of triplet methylene
Ball-and-stick model of triplet methylene
Space filling model of triplet methylene
Space filling model of triplet methylene
Names
IUPAC name
Dihydridocarbon(2•)[1]
Preferred IUPAC name
Methylidene[2]
Other names
Dihydridocarbon
Carbene
Methylene
Methene[1]
Identifiers
3D model (
JSmol
)
1696832
ChEBI
ChemSpider
56
MeSH carbene
  • InChI=1S/CH2/h1H2 checkY
    Key: HZVOZRGWRWCICA-UHFFFAOYSA-N checkY
  • [CH2]
Properties
CH
2
2•
Molar mass 14.0266 g mol−1
Appearance Colourless gas
Reacts
Conjugate acid
Methenium
Thermochemistry
193.93 J K−1 mol−1
Std enthalpy of
formation
fH298)
386.39 kJ mol−1
Related compounds
Related compounds
Methyl (CH3)
Methylidyne (CH)
Carbide (C)
Silylene (SiH2)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Methylene (IUPAC name: Methylidene, also called carbene or methene) is an organic compound with the chemical formula CH
2
(also written [CH
2
]
). It is a colourless gas that fluoresces in the mid-infrared range, and only persists in dilution, or as an adduct.

Methylene is the simplest carbene.[3]: p.7 [4] It is usually detected only at very low temperatures, or as a short-lived intermediate in chemical reactions.[5]

Nomenclature

The

IUPAC
names, are constructed according to the substitutive and additive nomenclatures, respectively.

Methylidene is viewed as methane with two hydrogen atoms removed. By default, this name pays no regard to the radicality of the methylene. Although in a context where the radicality is considered, it can also name the non-radical excited state, whereas the radical ground state with two unpaired electrons is named methanediyl.

Methylene is also used as the trivial name for the substituent groups methanediyl (>CH
2
), and methylidene (=CH
2
).

Methylene has an electron affinity of 0.65 eV.[6]

Discovery and preparation

Using the technique of flash photolysis with the compound diazomethane, Gerhard Herzberg and Jack Shoosmith[7] were the first to produce and spectroscopically characterize the methylene molecule. In their work they obtained the ultraviolet spectrum of gas phase methylene at around 141.5 nm. Their analysis of the spectrum lead them to the conclusion that the ground electronic state was an electronic triplet state and that the equilibrium structure was either linear, or else it had a large bond angle of about 140°. It turns out that the latter is correct.[8] The reactions of methylene were also studied around 1960, by infrared spectroscopy in frozen gas matrix isolation experiments.[9][10]

Methylene can be prepared, under suitable conditions, by decomposition of compounds with a methylidene or methanediyl group, such as

photosensitized reagents (such as benzophenone), or thermal decomposition.[5][11]

The methylene molecule (CH2) was mentioned for the first time by Donald Duck in a comic in 1944.[12][13]

Chemical properties

Radicality

Many of methylene's electronic states lie relatively close to each other, giving rise to varying degrees of radical chemistry. The ground state is a triplet radical with two unpaired electrons (X̃3B1),[11] and the first excited state is a singlet non-radical (ã1A1). With the singlet non-radical only 38 kJ above the ground state,[11] a sample of methylene exists as a mixture of electronic states even at room temperature, giving rise to complex reactions. For example, reactions of the triplet radical with non-radical species generally involves abstraction, whereas reactions of the singlet non-radical not only involves abstraction, but also insertion or addition.

[CH
2
]
2•(X̃3B1) + H
2
O
[CH
3
]
+ [HO]
[CH
2
]
(ã1A1) + H
2
O
H
2
CO
+ H
2
or H
3
COH

The singlet state is also more

stereospecific than the triplet.[11]

Unsolvated methylene will spontaneously autopolymerise to form various excited oligomers, the simplest of which, is the excited form of the alkene ethylene. The excited oligomers, decompose rather than decay to a ground state. For example, the excited form of ethylene decomposes to acetylene and atomic hydrogen.[11]

CH
2
H
2
CCH*
2
→ HCCH + 2 H

Unsolvated, excited methylene will form stable ground state oligomers.

CH*
2
H
2
CCH
2

Structure

The ground state of methylene has an

kcal/mol.[11]

The singlet state has a slightly higher energy (by about 9 kcal/mol) than the triplet state,[11] and its H-C-H angle is smaller, about 102°. In dilute mixtures with an inert gas, the two states will convert to each other until reaching an equilibrium.[11]

Chemical reactions

Organic chemistry

Neutral methylene complexes undergo different

chemical reactions depending on the pi character of the coordinate bond to the carbon centre. A weak contribution, such as in diazomethane, yields mainly substitution reactions, whereas a strong contribution, such as in ethenone, yields mainly addition reactions. Upon treatment with a standard base, complexes with a weak contribution convert to a metal methoxide. With strong acids (e.g., fluorosulfuric acid
), they can be protonated to give CH
3
L+
. Oxidation of these complexes yields formaldehyde, and reduction yields methane.

Free methylene undergoes the typical chemical reactions of a carbene. Addition reactions are very fast and exothermic.[14]

When the methylene molecule is in its state of lowest energy, the unpaired valence electrons are in separate atomic orbitals with independent spins, a configuration known as triplet state.

Methylene may gain an electron yielding a monovalent

phenyl sodium (C
6
H
5
Na
) with trimethylammonium bromide ((CH
3
)4N+
Br
).[5] The ion has bent geometry, with a H-C-H angle of about 103°.[11]

Reactions with inorganic compounds

Methylene is also a common

Methylene can bond as a terminal ligand, which is called methylidene, or as a bridging ligand, which is called methanediyl.

See also

References

  1. ^ a b "methanediyl (CHEBI:29357)". Chemical Entities of Biological Interest. UK: European Bioinformatics Institute. 14 January 2009. IUPAC Names. Retrieved 2 January 2012.
  2. ^ .
  3. ^ a b c W. B. DeMore and S. W. Benson (1964), Preparation, properties, and reactivity of methylene. In Advances in Photochemistry, John Wiley & Sons, 453 pages.
  4. ^ "Methylene". webbook.nist.gov. Retrieved 12 April 2018.
  5. S2CID 4272040
    .
  6. ^ P.R. Bunker, 'The Spectrum, Structure, and Singlet-Triplet Splitting in Methylene CH2.' Chapter in ‘Comparison of Ab Initio Quantum Chemistry with Experiment for small molecules’, ed. Rodney J. Bartlett, Reidel Dordrecht The Netherlands (1985).
  7. .
  8. doi:10.1021/ja00886a006.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link
    )
  9. ^ a b c d e f g h i j k Isaiah Shavitt (1985), Geometry and singlet-triplet energy gap in methylene: A critical review of experimental and theoretical determinations. Tetrahedron, volume 41, issue 8, page 1531
  10. . Among experiments which have not, to our knowledge, been carried out as yet is one of a most intriguing nature suggested in the literature of no less than 19 years ago (91).
    Footnote 91 cites the relevant issue of Walt Disney's Comics and Stories
  11. ^ "If I mix CH2 with NH4 and boil the atoms in osmotic fog, I should get speckled nitrogen." Walt Disney's Comics and Stories, issue 44, 1944
  12. ^ Milan Lazár (1989), Free radicals in chemistry and biology. CRC Press.
  13. ^ Sou-Chan Chang, Zakya H. Kafafi, Robert H. Hauge, W. Edward Billups, and John L. Margrave (1987), Isolation and characterization of copper methylene (CuCH2) via FTIR matrix isolation spectroscopy. Journal of the American Chemical Society, volume 109 pages 4508-4513. .