Sarcopterygii
Lobe-finned fishes | |
---|---|
![]() | |
From top to bottom and left to right, examples of sarcopterygians: tetrapodomorph Panderichthys rhombolepis .
| |
Scientific classification ![]() | |
Kingdom: | Animalia |
Phylum: | Chordata |
Clade: | Euteleostomi |
Clade: | Sarcopterygii Romer, 1955 |
Subgroups | |
|
Sarcopterygii (
The known extant non-tetrapod sarcopterygians include two species of coelacanths and six species of lungfishes.
Characteristics

Early lobe-finned fishes are
Most species of lobe-finned fishes are extinct. The largest known lobe-finned fish was
Classification
Taxonomists who subscribe to the cladistic approach include the grouping Tetrapoda within this group, which in turn consists of all species of four-limbed vertebrates.
Taxonomy
The classification below follows Benton (2004),[11] and uses a synthesis of rank-based Linnaean taxonomy and also reflects evolutionary relationships. Benton included the Superclass Tetrapoda in the Subclass Sarcopterygii in order to reflect the direct descent of tetrapods from lobe-finned fish, despite the former being assigned a higher taxonomic rank.[11]
Actinistia
|
Actinistia, coelacanths, are a subclass of lobe-finned fishes, all but two of which are fossil species. The subclass Actinistia contains the coelacanths, including the two living coelacanths: the West Indian Ocean coelacanth and the Indonesian coelacanth. | |
---|---|---|
Dipnoi | Queensland lungfish
|
Dipnoi, lungfish, also known as salamanderfish,[12] are a subclass of freshwater fish. Lungfish are best known for retaining characteristics primitive within the bony fishes, including the ability to breathe air, and structures primitive within the lobe-finned fishes, including the presence of lobed fins with a well-developed internal skeleton. Today, lungfish live only in Africa, South America, and Australia. While vicariance would suggest this represents an ancient distribution limited to the Mesozoic supercontinent Gondwana, the fossil record suggests advanced lungfish had a widespread freshwater distribution and the current distribution of modern lungfish species reflects extinction of many lineages following the breakup of Pangaea, Gondwana, and Laurasia. |
Tetrapodomorpha | ![]() Advanced tetrapodomorph Tiktaalik |
Tetrapodomorpha, tetrapods and their extinct relatives, are a clade of vertebrates consisting of tetrapods (four-limbed vertebrates) and their closest sarcopterygian relatives that are more closely related to living tetrapods than to living lungfish.[13] Advanced forms transitional between fish and the early labyrinthodonts, like Tiktaalik, have been referred to as "fishapods" by their discoverers, being half-fish, half-tetrapods, in appearance and limb morphology. The Tetrapodomorpha contain the crown group tetrapods (the last common ancestor of living tetrapods and all of its descendants) and several groups of early stem tetrapods, and several groups of related lobe-finned fishes, collectively known as the osteolepiforms. The Tetrapodamorpha minus the crown group Tetrapoda are the stem tetrapoda, a paraphyletic unit encompassing the fish to tetrapod transition. Among the characters defining tetrapodomorphs are modifications to the fins, notably a humerus with convex head articulating with the glenoid fossa (the socket of the shoulder joint). Tetrapodomorph fossils are known from the early Devonian onwards, and include Osteolepis, Panderichthys, Kenichthys, and Tungsenia.[14] |
- Subclass Sarcopterygii
- †Order Onychodontida
- Order Actinistia
- Infraclass Dipnomorpha
- †Order Porolepiformes
- Subclass Dipnoi
- Order Ceratodontiformes
- Order Lepidosireniformes
- Infraclass Tetrapodomorpha
- †Order Rhizodontida
- Superorder Osteolepidida
- †Order Osteolepiformes
- †Family Tristichopteridae
- †Order Panderichthyida
- Superclass Tetrapoda
- †Order Osteolepiformes
- †Order
Phylogeny
The cladogram presented below is based on studies compiled by Janvier et al. (1997) for the Tree of Life Web Project,[15] Mikko's Phylogeny Archive[16] and Swartz (2012).[17]
Sarcopterygii |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
- Sarcopterygii incertae sedis
- †Guiyu oneiros Zhu et al., 2009
- †Diabolepis speratus (Chang & Yu, 1984)
- †Langdenia campylognatha Janvier & Phuong, 1999
- †Ligulalepis Schultze, 1968
- †Meemannia eos Zhu, Yu, Wang, Zhao & Jia, 2006
- †Psarolepis romeri Yu 1998 sensu Zhu, Yu, Wang, Zhao & Jia, 2006
- †Megamastax ambylodus Choo, Zhu, Zhao, Jia, & Zhu, 2014
- †Sparalepis tingi Choo, Zhu, Qu, Yu, Jia & Zhaoh, 2017[18][19]

- paraphyletic Osteolepida incertae sedis|[a]
- †Bogdanovia orientalisObrucheva 1955 [has been treated as Coelacanthinimorph sarcopterygian]
- †Canningius groenlandicus Säve-Söderbergh, 1937
- †Chrysolepis
- †Geiserolepis
- †Latvius
- †L. grewingki (Gross, 1933)
- †L. porosus Jarvik, 1948
- †L. obrutus Vorobyeva, 1977
- †Lohsania utahensis Vaughn, 1962
- †Megadonichthys kurikae Vorobyeva, 1962
- †Platyethmoidia antarctica Young, Long & Ritchie, 1992
- †Shirolepis ananjevi Vorobeva, 1977
- †Sterropterygion brandei Thomson, 1972
- †Thaumatolepis edelsteini Obruchev, 1941
- †Thysanolepis micans Vorobyeva, 1977
- †Vorobjevaia dolonodon Young, Long & Ritchie, 1992
- †
- paraphyletic Elpistostegalia/Panderichthyida incertae sedis
- †Parapanderichthys stolbovi (Vorobyeva, 1960) Vorobyeva, 1992
- †Howittichthys warrenae Long & Holland, 2008
- †Livoniana multidentata Ahlberg, Luksevic & Mark-Kurik, 2000
- Stegocephaliaincertae sedis
- †Antlerpeton clarkii Thomson, Shubin & Poole, 1998
- †Austrobrachyops jenseni Colbert & Cosgriff, 1974
- †Broilisaurus raniceps (Goldenberg, 1873) Kuhn, 1938
- †Densignathus rowei Daeschler, 2000
- †Doragnathus woodi Smithson, 1980
- †Jakubsonia livnensis Lebedev, 2004
- †Limnerpeton dubium Fritsch, 1901 (nomen dubium)
- †Limnosceloides Romer, 1952
- †L. dunkardensis Romer, 1952 (Type)
- †L. brahycoles Langston, 1966
- †Occidens portlockiClack & Ahlberg, 2004
- †Ossinodus puerorum emend Warren & Turner, 2004
- †Romeriscus periallus Baird & Carroll, 1968
- †Sigournea multidentata Bolt & Lombard, 2006
- †Sinostega pani Zhu et al., 2002
- †Ymeria denticulata Clack et al., 2012
Evolution

- Panderichthys, suited to muddy shallows;
- Tiktaalik with limb-like fins that could take it onto land;
- Early tetrapods in weed-filled swamps, such as:
- Acanthostega, which had feet with eight digits,
- Ichthyostega with limbs.
Lobe-finned fishes (sarcopterygians) and their relatives the ray-finned fishes (
In the Early Devonian (416–397 Ma), the sarcopterygians split into two main lineages: the
The Rhipidistians, whose ancestors probably lived in the oceans near the river mouths (estuaries), left the ocean world and migrated into freshwater habitats. In turn, they split into two major groups: lungfish and the tetrapodomorphs. Lungfish radiated into their greatest diversity during the Triassic period; today fewer than a dozen genera remain. They evolved the first proto-lungs and proto-limbs, adapting to living outside a submerged water environment by the middle Devonian (397–385 Ma).
Hypotheses for means of pre-adaption
There are three major hypotheses as to how lungfish evolved their stubby fins (proto-limbs).
- Shrinking waterhole
- The first, traditional explanation is the "shrinking waterhole hypothesis", or "desert hypothesis", posited by the American paleontologist Alfred Romer, who believed that limbs and lungs may have evolved from the necessity of having to find new bodies of water as old waterholes dried up.[21]
- Inter-tidal adaption
- Niedźwiedzki, Szrek, Narkiewicz, et al. (2010)Zachełmie tracks in Zachełmie, Świętokrzyskie Voivodeship, Poland, the oldest discovered fossil evidence of tetrapods.[22][23]
- Woodland swamp adaption
- Retallack (2011)[24] proposed a third hypothesis is dubbed the "woodland hypothesis": Retallack argues that limbs may have developed in shallow bodies of water, in woodlands, as a means of navigating in environments filled with roots and vegetation. He based his conclusions on the evidence that transitional tetrapod fossils are consistently found in habitats that were formerly humid and wooded floodplains.[21][24]
- Habitual escape onto land
- A fourth, minority hypothesis posits that advancing onto land achieved more safety from predators, less competition for prey, and certain environmental advantages not found in water—such as oxygen concentration,[27] and temperature control[29]—implying that organisms developing limbs were also adapting to spending some of their time out of water. However, studies have found that sarcopterygians developed tetrapod-like limbs suitable for walking well before venturing onto land.[32] This suggests they adapted to walking on the ground-bed under water before they advanced onto dry land.
History through to the end-Permian extinction
The first tetrapodomorphs, which included the gigantic rhizodonts, had the same general anatomy as the lungfish, who were their closest kin, but they appear not to have left their water habitat until the late Devonian epoch (385–359 Ma), with the appearance of tetrapods (four-legged vertebrates). Tetrapods are the only tetrapodomorphs which survived after the Devonian.
Non-tetrapod sarcopterygians continued until towards the end of Paleozoic era, suffering heavy losses during the Permian–Triassic extinction event (251 Ma).
See also
- List of sarcopterygian genera
- Cladistic Classification of Class Sarcopterygii
Footnotes
- ^ The Osteolepida taxa were not addressed by Ahlberg & Johanson (1998).[citation needed]
References
- ^ S2CID 236438229.
- ^
Zhu, M.; Zhao, W.; Jia, L.; Lu, J.; Qiao, T.; Qu, Q. (2009). "The oldest articulated osteichthyan reveals mosaic gnathostome characters". Nature. 458 (7237): 469–474. S2CID 669711.
- ^
Coates, M.I. (2009). "Palaeontology: Beyond the age of fishes". Nature. 458 (7237): 413–414. S2CID 4384525.
- ^ "Pharyngula – Guiyu oneiros". Science Blogs (blog). 1 April 2009. Archived from the original on 9 March 2012.
- ^ Clack, J.A. (2002). Gaining Ground. Indiana University.
- ^
Kardong, Kenneth V. (1998). Vertebrates: Comparative anatomy, function, evolution (second ed.). USA: McGraw-Hill. ISBN 0-697-28654-1
- ^ Clack, J.A. (2009). "The fin to limb transition: New data, interpretations, and hypotheses from paleontology and developmental biology". Annual Review of Earth and Planetary Sciences. 37 (1): 163–179. .
- ^ Froese, Rainer, and Daniel Pauly, eds. (2009). "Lepidosirenidae" in FishBase. January 2009 version.
- ^ "Protopterus aethiopicus". Fishing-worldrecords.com. Lung fishes. Archived from the original on 3 August 2011.
- ^
Nelson, Joseph S. (2006). ISBN 978-0-471-25031-9.
- ^ a b Benton, M.J. (2004). Vertebrate Paleontology (3rd ed.). Blackwell Science.
- ^
Haeckel, Ernst Heinrich Philipp August (1892). Lankester, Edwin Ray; Schmitz, L. Dora (eds.). The History of Creation, or, the Development of the Earth and Its Inhabitants by the Action of Natural Causes (8th, German ed.). D. Appleton. p. 289.
A popular exposition of the doctrine of evolution in general, and of that of Darwin, Goethe, and Lamarck in particular.
- ^
Amemiya, C.T.; Alfoldi, J.; Lee, A.P.; Fan, S.H.; Philippe, H.; MacCallum, I.; Braasch, I.; et al. (2013). "The African coelacanth genome provides insights into tetrapod evolution". PMID 23598338.
- ^
Lu, Jing; Zhu, Min; Long, John A.; Zhao, Wenjin; Senden, Tim J.; Jia, Liantao; Qiao, Tuo (2012). "The earliest known stem-tetrapod from the lower Devonian of China". Nature Communications. 3: 1160. PMID 23093197.
- ^ Janvier, Philippe (1 January 1997). "Vertebrata: Animals with backbones". tolweb.org (Version 01 January 1997 (under construction) ed.). The Tree of Life Web Project.
- ^ Haaramo, Mikko (2003). "Sarcopterygii". Mikko's Phylogeny Archive. University of Helsinki. Retrieved 4 November 2013.
- ^
Swartz, B. (2012). "A marine stem-tetrapod from the Devonian of western North America". PLOS ONE. 7 (3): e33683. PMID 22448265.
- ^
Choo, Brian; Zhu, Min; Qu, Qingming; Yu, Xiaobo; Jia, Liantao; Zhao, Wenjin (8 March 2017). "A new osteichthyan from the late Silurian of Yunnan, China". PLOS ONE. 12 (3): e0170929. PMID 28273081.
- ^ "Ancient southern China fish may have evolved prior to the 'Age of Fish'". ScienceDaily.com (Press release). PLoS. March 2017. Archived from the original on 8 March 2017. Retrieved 11 March 2017.
- ^ Benton 2005.
- ^ a b "Fish-tetrapod transition got a new hypothesis in 2011". Science 2.0. 27 December 2011. Retrieved 2 January 2012.
- ^ a b
Niedźwiedzki, Grzegorz; Szrek, Piotr; Narkiewicz, Katarzyna; Narkiewicz, Marek; Ahlberg, Per E. (2010). "Tetrapod trackways from the early Middle Devonian period of Poland". S2CID 4428903.
- ^ Barley, Shanta (6 January 2010). "Oldest footprints of a four-legged vertebrate discovered". New Scientist. Retrieved 3 January 2010.
- ^ a b
S2CID 128827936.
- ^ Carroll, R.L.; Irwin, J.; Green, D.M. (2005). "Thermal physiology and the origin of terrestriality in vertebrates". Zoological Journal of the Linnean Society. 143 (3): 345–358. .
- ^ a b
Hohn-Schulte, B.; Preuschoft, H.; Witzel, U.; Distler-Hoffmann, C. (2013). "Biomechanics and functional preconditions for terrestrial lifestyle in basal tetrapods, with special consideration of Tiktaalik roseae". Historical Biology. 25 (2): 167–181. S2CID 85407197.
- ^ Carroll, Irwin, & Green (2005),[25] cited in[26]
- ^
Clack, J.A. (2007). "Devonian climate change, breathing, and the origin of the tetrapod stem group" (PDF). Integrative and Comparative Biology. 47 (4): 1–14. PMID 21672860.[full citation needed]
- ^ Clack (2007),[28] cited in[26]
- ^
King, H.M.; Shubin, N.H.; Coates, M.I.; Hale, M.E. (2011). "Behavioural evidence for the evolution of walking and bounding before terrestriality in sarcopterygian fishes". Proceedings of the National Academy of Sciences USA. 108 (52): 21146–21151. PMID 22160688.
- ^
Pierce, S.E.; Clack, J.A.; Hutchinson, J.R. (2012). "Three-dimensional limb joint mobility in the early tetrapod Ichthyostega". S2CID 3127857.
- ^ King (2011),[30] cited in[31]