Timeline of quantum mechanics

Source: Wikipedia, the free encyclopedia.

The timeline of quantum mechanics is a list of key events in the history of quantum mechanics, quantum field theories and quantum chemistry.

19th century

Maltese Cross
placed between the plate and the uranium salt is clearly visible.

20th century

1900–1909

Annus Mirabilis papers

1910–1919

A schematic diagram of the apparatus for Millikan's refined oil drop experiment
  • 1911:
    • Nitrogen-14 atom was 1, in contradiction to the Rutherford prediction of ½. These anomalies are later explained by the discoveries of the neutrino and the neutron
      .
    • Ștefan Procopiu performs experiments in which he determines the correct value of electron's magnetic dipole moment, μB = 9.27×10−21 erg·Oe−1 (in 1913 he is also able to calculate a theoretical value of the Bohr magneton based on Planck's quantum theory).
    • John William Nicholson is noted as the first to create an atomic model that quantized angular momentum as h/2pi.[11][12] Niels Bohr quoted him in his 1913 paper of the Bohr model of the atom.[13]
  • 1912 –
    cosmic radiation
    .
  • 1912 – Henri Poincaré publishes an influential mathematical argument in support of the essential nature of energy quanta.[14][15]
  • 1913:
    • atomic weight of the atoms of each element
      .
    • Niels Bohr publishes his 1913 paper of the Bohr model of the atom.[16]
    • Ștefan Procopiu publishes a theoretical paper with the correct value of the electron's magnetic dipole moment μB.[17]
    • Niels Bohr obtains theoretically the value of the electron's magnetic dipole moment μB as a consequence of his atom model
    • Johannes Stark and Antonino Lo Surdo independently discover the shifting and splitting of the spectral lines of atoms and molecules due to the presence of the light source in an external static electric field.
    • To explain the Rydberg formula (1888), which correctly modeled the light emission spectra of atomic hydrogen, Bohr hypothesizes that negatively charged electrons revolve around a positively charged nucleus at certain fixed "quantum" distances and that each of these "spherical orbits" has a specific energy associated with it such that electron movements between orbits requires "quantum" emissions or absorptions of energy.
  • 1914 – James Franck and Gustav Hertz report their experiment on electron collisions with mercury atoms, which provides a new test of Bohr's quantized model of atomic energy levels.[18]
  • 1915 – Einstein first presents to the
    General Theory of Relativity. Although this theory is not directly applicable to quantum mechanics, theorists of quantum gravity
    seek to reconcile them.
  • 1916 – Paul Epstein[19] and Karl Schwarzschild,[20] working independently, derive equations for the linear and quadratic Stark effect in hydrogen.
  • 1916 –
    bonding between atoms of a molecule and the lone pairs of electrons that may exist in the molecule.[21]
  • 1916 – To account for the Zeeman effect (1896), i.e. that atomic absorption or emission spectral lines change when the light source is subjected to a magnetic field, Arnold Sommerfeld suggests there might be "elliptical orbits" in atoms in addition to spherical orbits.
  • 1918 – Sir Ernest Rutherford notices that, when
    scintillation detectors shows the signatures of hydrogen nuclei. Rutherford determines that the only place this hydrogen could have come from was the nitrogen, and therefore nitrogen must contain hydrogen nuclei. He thus suggests that the hydrogen nucleus, which is known to have an atomic number of 1, is an elementary particle, which he decides must be the protons hypothesized by Eugen Goldstein
    .
  • 1919 – Building on the work of Lewis (1916), Irving Langmuir coins the term "covalence" and postulates that coordinate covalent bonds occur when two electrons of a pair of atoms come from both atoms and are equally shared by them, thus explaining the fundamental nature of chemical bonding and molecular chemistry.

1920–1929

A plaque at the University of Frankfurt commemorating the Stern–Gerlach experiment

1930–1939

Electron microscope constructed by Ernst Ruska in 1933

1940–1949

A Feynman diagram showing the radiation of a gluon when an electron and positron are annihilated

1950–1959

1960–1969

Eightfold Way proposed by Murray Gell-Mann in 1962. The
Ω
particle at the bottom had not yet been observed at the time, but a particle closely matching these predictions was discovered[48] by a particle accelerator group at Brookhaven
, proving Gell-Mann's theory.

1971–1979

  • 1971 –
    strong force. It also explains how the particles of the weak interaction, the W and Z bosons, obtain their mass via spontaneous symmetry breaking and the Yukawa interaction
    .
  • 1972 – Francis Perrin discovers "natural nuclear fission reactors" in uranium deposits in Oklo, Gabon, where analysis of isotope ratios demonstrate that self-sustaining, nuclear chain reactions have occurred. The conditions under which a natural nuclear reactor could exist were predicted in 1956 by P. Kuroda.
  • 1973 – Peter Mansfield formulates the physical theory of nuclear magnetic resonance imaging (NMRI) aka magnetic resonance imaging (MRI).[52][53][54][55]
  • 1974 – Pier Giorgio Merli performs Young's double-slit experiment (1909) using a single electron with similar results, confirming the existence of
    quantum fields
    for massive particles.
  • 1977 – Ilya Prigogine develops non-equilibrium, irreversible thermodynamics and quantum operator theory, especially the time superoperator theory; he is awarded the Nobel Prize in Chemistry in 1977 "for his contributions to non-equilibrium thermodynamics, particularly the theory of dissipative structures".[56]
  • 1978 – Pyotr Kapitsa observes new phenomena in hot deuterium plasmas excited by very high power microwaves in attempts to obtain controlled thermonuclear fusion reactions in such plasmas placed in longitudinal magnetic fields, using a novel and low-cost design of thermonuclear reactor, similar in concept to that reported by Theodor V. Ionescu et al. in 1969. Receives a Nobel prize for early low temperature physics experiments on helium superfluidity carried out in 1937 at the Cavendish Laboratory in Cambridge, UK, and discusses his 1977 thermonuclear reactor results in his Nobel lecture on December 8, 1978.
  • 1979 – Kenneth A. Rubinson and coworkers, at the
    Heisenberg ferromagnet.[57]

1980–1999

  • 1980 to 1982 –
    John F. Clauser. and. Stuart Freedman in 1972.[60] Aspect later shared the 2022 Nobel Prize in Physics with Clauser and Anton Zeilinger "for experiments with entangled photons, establishing the violation of Bell inequalities and pioneering quantum information science."[61]
  • 1982 to 1997 –
    PPPL, Princeton, USA: Operated since 1982, produces 10.7MW of controlled fusion power for only 0.21s in 1994 by using T-D nuclear fusion in a tokamak reactor with "a toroidal 6T magnetic field for plasma confinement, a 3MA plasma current and an electron density of 1.0×1020 m−3 of 13.5 keV"[62]
  • 1983 –
    Z particle
    a few months later, in May 1983.
  • 1983 to 2011 – The largest and most powerful experimental nuclear fusion tokamak reactor in the world, Joint European Torus (JET) begins operation at Culham Facility in UK; operates with T-D plasma pulses and has a reported gain factor Q of 0.7 in 2009, with an input of 40MW for plasma heating, and a 2800-ton iron magnet for confinement;[63] in 1997 in a tritium-deuterium experiment JET produces 16 MW of fusion power, a total of 22 MJ of fusion, energy and a steady fusion power of 4 MW which is maintained for 4 seconds.[64]
  • 1985 to 2010 – The JT-60 (Japan Torus) begins operation in 1985 with an experimental D-D nuclear fusion tokamak similar to the JET; in 2010 JT-60 holds the record for the highest value of the fusion triple product achieved: 1.77×1028 K·s·m−3 = 1.53×1021 keV·s·m−3.;[65] JT-60 claims it would have an equivalent energy gain factor, Q of 1.25 if it were operated with a T-D plasma instead of the D-D plasma, and on May 9, 2006, attains a fusion hold time of 28.6 s in full operation; moreover, a high-power microwave gyrotron construction is completed that is capable of 1.5MW output for 1s,[66] thus meeting the conditions for the planned ITER, large-scale nuclear fusion reactor. JT-60 is disassembled in 2010 to be upgraded to a more powerful nuclear fusion reactor—the JT-60SA—by using niobium-titanium superconducting coils for the magnet confining the ultra-hot D-D plasma.
  • 1986 –
    YBCO and other perovskite-type oxides; promptly receive a Nobel prize in 1987 and deliver their Nobel lecture on December 8, 1987.[67]
  • 1986 –
    Vladimir Gershonovich Drinfeld introduces the concept of quantum groups as Hopf algebras in his seminal address on quantum theory at the International Congress of Mathematicians, and also connects them to the study of the Yang–Baxter equation, which is a necessary condition for the solvability of statistical mechanics models; he also generalizes Hopf algebras to quasi-Hopf algebras, and introduces the study of Drinfeld twists, which can be used to factorize the R-matrix corresponding to the solution of the Yang–Baxter equation associated with a quasitriangular Hopf algebra
    .
  • 1988 to 1998 – Mihai Gavrilă discovers in 1988 the new quantum phenomenon of atomic dichotomy in hydrogen and subsequently publishes a book on the atomic structure and decay in high-frequency fields of hydrogen atoms placed in ultra-intense laser fields.[68][69][70][71][72][73][74]
  • 1991 – Richard R. Ernst develops two-dimensional nuclear magnetic resonance spectroscopy (2D-FT NMRS) for small molecules in solution and is awarded the Nobel Prize in Chemistry in 1991 "for his contributions to the development of the methodology of high resolution nuclear magnetic resonance (NMR) spectroscopy."[75]
  • 1995 –
    MIT
    creates a condensate made of sodium-23. Ketterle's condensate has about a hundred times more atoms, allowing him to obtain several important results such as the observation of quantum mechanical interference between two different condensates.
  • 1997 –
    superpolynomial improvement over known non-quantum algorithms.[77]
  • 1999 to 2013 – NSTX—The National Spherical Torus Experiment at PPPL, Princeton, USA launches a nuclear fusion project on February 12, 1999, for "an innovative magnetic fusion device that was constructed by the Princeton Plasma Physics Laboratory (PPPL) in collaboration with the Oak Ridge National Laboratory, Columbia University, and the University of Washington at Seattle"; NSTX is being used to study the physics principles of spherically shaped plasmas.[78]

21st century

Graphene is a planar atomic-scale honeycomb lattice made of carbon atoms which exhibits unusual and interesting quantum properties.
  • 2001 – Researchers at
    NMR setup, factoring 15 into 3 times 5 using seven qubits.[79]
  • 2002 – Leonid I. Vainerman organizes a meeting at Strasbourg of theoretical physicists and mathematicians focused on quantum group and quantum groupoid applications in quantum theories; the proceedings of the meeting are published in 2003 in a book edited by the meeting organizer.[80]
  • 2007 to 2010 – Alain Aspect, Anton Zeilinger and John Clauser present progress with the resolution of the non-locality aspect of quantum theory and in 2010 are awarded the Wolf Prize in Physics.[81]
  • 2009 – Aaron D. O'Connell invents the first quantum machine, applying quantum mechanics to a macroscopic object just large enough to be seen by the naked eye, which is able to vibrate a small amount and large amount simultaneously.[82]
  • 2011 – Zachary Dutton demonstrates how photons can co-exist in superconductors. "Direct Observation of Coherent Population Trapping in a Superconducting Artificial Atom",[83]
  • 2012 – The existence of
    large hadron collider at CERN. Peter Higgs and François Englert were awarded the 2013 Nobel Prize in Physics for their theoretical predictions.[84]
  • 2014 – Scientists transfer data by quantum teleportation over a distance of 10 feet with zero percent error rate, a vital step towards a quantum internet.[85][86]

See also

References

  1. ^ a b c d e f g h i j k l m n o p q r Peacock 2008, pp. 175–183
  2. ^ Becquerel, Henri (1896). "Sur les radiations émises par phosphorescence". Comptes Rendus. 122: 420–421.
  3. ^ "Milestone 1 : Nature Milestones in Spin". www.nature.com. Retrieved 2018-09-09.
  4. ^ Marie Curie and the Science of Radioactivity: Research Breakthroughs (1897–1904) Archived 2015-11-17 at the Wayback Machine. Aip.org. Retrieved on 2012-05-17.
  5. ^ Histories of the Electron: The Birth of Microphysics edited by Jed Z. Buchwald, Andrew Warwick
  6. Quotes from one of Larmor’s voluminous work include: “while atoms of matter are in whole or in part aggregations of electrons in stable orbital motion. In particular, this scheme provides a consistent foundation for the electrodynamic laws, and agrees with the actual relations between radiation and moving matter.”
    • “A formula for optical dispersion was obtained in § 11 of the second part of this memoir, on the simple hypothesis that the electric polarization of the molecules vibrated as a whole in unison with the electric field of the radiation.”
    • “…that of the transmission of radiation across a medium permeated by molecules, each consisting of a system of electrons in steady orbital motion, and each capable of free oscillations about the steady state of motion with definite free periods analogous to those of the planetary inequalities of the Solar System;”
    • “‘A’ will be a positive electron in the medium, and ‘B’ will be the complementary negative one…We shall thus have created two permanent conjugate electrons A and B ; each of them can be moved about through the medium, but they will both persist until they are destroyed by an extraneous process the reverse of that by which they are formed.”
  7. ^ Soddy, Frederick (December 12, 1922). "The origins of the conceptions of isotopes" (PDF). Nobel Lecture in Chemistry. Retrieved 25 April 2012.
  8. ^ Ernest Rutherford, Baron Rutherford of Nelson, of Cambridge. Encyclopædia Britannica on-line. Retrieved on 2012-05-17.
  9. ^ The Nobel Prize in Chemistry 1908: Ernest Rutherford. nobelprize.org
  10. ^ J. W. Nicholson, Month. Not. Roy. Astr. Soc. lxxii. pp. 49,130, 677, 693, 729 (1912).
  11. ^ The Atomic Theory of John William Nicholson, Russell McCormmach, Archive for History of Exact Sciences, Vol. 3, No. 2 (25.8.1966), pp. 160-184 (25 pages), Springer.
  12. ^ On the Constitution of Atoms and Molecules Niels Bohr, Philosophical Magazine, Series 6, Volume 26 July 1913, p. 1-25
  13. ^ McCormmach, Russell (Spring 1967). "Henri Poincaré and the Quantum Theory". Isis. 58 (1): 37–55.
    S2CID 120934561
    .
  14. ^ Irons, F. E. (August 2001). "Poincaré's 1911–12 proof of quantum discontinuity interpreted as applying to atoms". American Journal of Physics. 69 (8): 879–884. .
  15. ^ On the Constitution of Atoms and Molecules, Niels Bohr, Philosophical Magazine, Series 6, Volume 26 July 1913, p. 1-25
  16. ^ Procopiu, Ştefan (1913). "Determining the Molecular Magnetic Moment by M. Planck's Quantum Theory". Bulletin Scientifique de l'Académie Roumaine de Sciences. 1: 151.
  17. . Now the beauty of Franck and Hertz's work lies not only in the measurement of the energy loss E2-E1 of the impinging electron, but they also observed that, when the energy of that electron exceeds 4.9 eV, mercury begins to emit ultraviolet light of a definite frequency ν as defined in the above formula. Thereby they gave (unwittingly at first) the first direct experimental proof of the Bohr relation!
  18. ^ P. S. Epstein, Zur Theorie des Starkeffektes, Annalen der Physik, vol. 50, pp. 489-520 (1916)
  19. ^ K. Schwarzschild, Sitzungsberichten der Kgl. Preuss. Akad. d. Wiss. April 1916, p. 548
  20. S2CID 95865413
  21. ^ H. A. Kramers, Roy. Danish Academy, Intensities of Spectral Lines. On the Application of the Quantum Theory to the Problem of Relative Intensities of the Components of the Fine Structure and of the Stark Effect of the Lines of the Hydrogen Spectrum, p. 287 (1919);Über den Einfluß eines elektrischen Feldes auf die Feinstruktur der Wasserstofflinien (On the influence of an electric field on the fine structure of hydrogen lines), Zeitschrift für Physik, vol. 3, pp. 199–223 (1920)
  22. S2CID 4110026
    .
  23. ^ P. S. Epstein, "The Stark Effect from the Point of View of Schroedinger's Quantum Theory", Physical Review, vol 28, pp. 695–710 (1926)
  24. ^ John von Neumann. 1932. The Mathematical Foundations of Quantum Mechanics., Princeton University Press: Princeton, New Jersey, reprinted in 1955, 1971 and 1983 editions
  25. .
  26. .
  27. .
  28. ^ Frédéric Joliot-Curie (December 12, 1935). "Chemical evidence of the transmutation of elements" (PDF). Nobel Lecture. Retrieved 25 April 2012.
  29. doi:10.1103/PhysRev.47.777.{{cite journal}}: CS1 maint: multiple names: authors list (link
    )
  30. .
  31. . Retrieved 17 May 2012.
  32. .
  33. .
  34. .
  35. .
  36. ^ Stix, Gary (October 1999). "Infamy and honor at the Atomic Café: Edward Teller has no regrets about his contentious career". Scientific American: 42–43. Archived from the original on 2012-10-18. Retrieved 25 April 2012.
  37. ^ Hans A. Bethe (May 28, 1952). MEMORANDUM ON THE HISTORY OF THERMONUCLEAR PROGRAM (Report). Reconstructed version from only partially declassified documents, with certain words deliberately deleted.
  38. .
  39. .
  40. .
  41. .
  42. .
  43. .
  44. , Thesis, Princeton University, (1956, 1973), pp 1–140
  45. on 2011-10-27.
  46. . (New techniques in solid-state NMR, p. 1, at Google Books)
  47. ^ V.E. Barnes; Connolly, P.; Crennell, D.; Culwick, B.; Delaney, W.; Fowler, W.; Hagerty, P.; Hart, E.; Horwitz, N.; Hough, P.; Jensen, J.; Kopp, J.; Lai, K.; Leitner, J.; Lloyd, J.; London, G.; Morris, T.; Oren, Y.; Palmer, R.; Prodell, A.; Radojičić, D.; Rahm, D.; Richardson, C.; Samios, N.; Sanford, J.; Shutt, R.; Smith, J.; Stonehill, D.; Strand, R.; et al. (1964). "Observation of a Hyperon with Strangeness Number Three" (PDF).
    OSTI 12491965
    .
  48. .
  49. ^ Brian David Josephson (December 12, 1973). "The Discovery of Tunnelling Supercurrents" (PDF). Nobel Lecture. Retrieved 25 April 2012.
  50. ^ Maria Goeppert Mayer (December 12, 1963). "The shell model" (PDF). Nobel Lecture. Retrieved 25 April 2012.
  51. S2CID 4992859.{{cite journal}}: CS1 maint: DOI inactive as of April 2024 (link
    )
  52. .
  53. .
  54. .
  55. . Retrieved 25 April 2012.
  56. .
  57. .
  58. .
  59. ^ "Physical Review Letters - Volume 28 Issue 14".
  60. ^ "The Nobel Prize in Physics 2022". NobelPrize.org. Retrieved 2024-04-20.
  61. ^ TFTR Machine Parameters. W3.pppl.gov (1996-05-10). Retrieved on 2012-05-17.
  62. ^ JET's Main Features-EFDA JET Archived 2011-11-20 at the Wayback Machine. Jet.efda.org. Retrieved on 2012-05-17.
  63. ^ European JET website Archived 2012-03-20 at the Wayback Machine. (PDF) . Retrieved on 2012-05-17.
  64. ^ Japan Atomic Energy Agency. Naka Fusion Institute Archived 2015-12-08 at the Wayback Machine
  65. ^ Fusion Plasma Research (FPR), JASEA, Naka Fusion Institute Archived 2015-12-08 at the Wayback Machine. Jt60.naka.jaea.go.jp. Retrieved on 2012-05-17.
  66. S2CID 34578587
    .
  67. .
  68. .
  69. .
  70. .
  71. .
  72. .
  73. ^ Richard R. Ernst (December 9, 1992). "Nuclear Magnetic Resonance Fourier Transform (2D-FT) Spectroscopy" (PDF). Nobel Lecture. Retrieved 25 April 2012.
  74. .
  75. ISBN 978-1-107-00217-3. Retrieved 2024-04-20. {{cite book}}: |website= ignored (help
    )
  76. ^ PPPL, Princeton, USA Archived 2011-06-07 at the Wayback Machine. Pppl.gov (1999-02-12). Retrieved on 2012-05-17.
  77. PMID 11780055
    .
  78. . Retrieved 17 May 2012.
  79. .
  80. .
  81. ^ "Coherent Population". Defense Procurement News. 2010-06-22. Retrieved 2013-01-30.
  82. ^ "The Higgs boson | CERN". home.cern. Retrieved 2020-08-26.
  83. New York Times
    . Retrieved 29 May 2014.
  84. S2CID 2190249
    .

Bibliography

External links