User:Haze2332/sandbox

Source: Wikipedia, the free encyclopedia.


Wikipedia Policies

Citing Sources

test

Sample pages

References

Calcium Signaling Workspace

Calcium ions are important for

G protein-coupled receptors
.

Calcium Concentration Regulation

Calcium Signaling Pathway

[Move picture somewhere later]

The resting concentration of Ca2+ in the

mitochondria. Certain proteins of the cytoplasm and organelles act as buffers by binding Ca2+. Signaling occurs when the cell is stimulated to release calcium ions (Ca2+) from intracellular stores, and/or when calcium enters the cell through plasma membrane ion channels.[1]

Specific signals can trigger a sudden increase in the cytoplasmic Ca2+ level up to 500–1,000 nM by opening channels in the

IP3 receptor), which is a Ca2+ channel, and thus releases Ca2+ from the endoplasmic reticulum
.

Depletion of calcium from the endoplasmic reticulum will lead to Ca2+ entry from outside the cell by activation of "Store-Operated Channels" (SOCs). This inflowing calcium current that results after stored calcium reserves have been released is referred to as Ca2+-release-activated Ca2+ current (ICRAC). The mechanisms through which ICRAC occurs are currently still under investigation, although two candidate molecules, Orai1 and STIM1, have been linked by several studies, and a model of store-operated calcium influx, involving these molecules, has been proposed. Recent studies have cited the phospholipase A2 beta,[2] nicotinic acid adenine dinucleotide phosphate (NAADP),[3] and the protein STIM 1[4] as possible mediators of ICRAC.

Movement of calcium ions from the extracellular compartment to the intracellular compartment alters membrane potential. This is seen in the heart, during the plateau phase of ventricular contraction. In this example, calcium acts to maintain depolarization of the heart. Calcium signaling through ion channels is also important in neuronal

synaptic transmission
.

Calcium as a secondary messenger

Important physiological roles for calcium signaling range widely. These include

ion pumps, and components of the cytoskeleton.[6]

Many of Ca2+-mediated events occur when the released Ca2+ binds to and activates the regulatory protein calmodulin. Calmodulin may activate calcium-calmodulin-dependent protein kinases, or may act directly on other effector proteins. Besides calmodulin, there are many other Ca2+-binding proteins that mediate the biological effects of Ca2+.

In

Kreb's cycle.[7][8]

Calcium ions play an important role in cell signaling, especially with regards to the ER. In the neuron, the ER may serve in a network integrating numerous extracellular and intracellular signals in a binary membrane system with the plasma membrane. Such an association with the plasma membrane creates the relatively new perception of the ER and theme of “a neuron within a neuron.” [Rephrase] The ER’s structural characteristics, ability to act as a Ca2+ sink, and specific CCa2+ releasing proteins, serve to create a system that may produce regenerative waves of Ca2+ release that may communicate both locally and globally in the cell. These Ca2+ signals, integrating extracellular and intracellular fluxes, have been implicated to play roles in synaptic plasticity and memory, neurotransmitter release, neuronal excitability and long term changes at the gene transcription level. ER stress is also related to Ca2+ signaling and along with the unfolded protein response, can cause ER associated degradation (ERAD) and autophagy.[9]

See also

References

Further reading


Category:Cell signaling Category:Signal transduction