Notch signaling pathway


The Notch signaling pathway is a highly
Notch signaling promotes proliferative signaling during neurogenesis, and its activity is inhibited by Numb to promote neural differentiation. It plays a major role in the regulation of embryonic development.
Notch signaling is dysregulated in many cancers, and faulty notch signaling is implicated in many diseases, including T-cell acute lymphoblastic leukemia (
Discovery
In 1914, John S. Dexter noticed the appearance of a notch in the wings of the fruit fly
Mechanism
The
The cleavage model was first proposed in 1993 based on work done with Drosophila Notch and C. elegans lin-12,[16][17] informed by the first oncogenic mutation affecting a human Notch gene.[18] Compelling evidence for this model was provided in 1998 by in vivo analysis in Drosophila by Gary Struhl[19] and in cell culture by Raphael Kopan.[20] Although this model was initially disputed,[1] the evidence in favor of the model was irrefutable by 2001.[21][22]
The receptor is normally triggered via direct cell-to-cell contact, in which the transmembrane proteins of the cells in direct contact form the ligands that bind the notch receptor. The Notch binding allows groups of cells to organize themselves such that, if one cell expresses a given trait, this may be switched off in neighbouring cells by the intercellular notch signal. In this way, groups of cells influence one another to make large structures. Thus, lateral inhibition mechanisms are key to Notch signaling. lin-12 and Notch mediate binary cell fate decisions, and lateral inhibition involves feedback mechanisms to amplify initial differences.[21]
The Notch cascade consists of Notch and Notch ligands, as well as intracellular proteins transmitting the notch signal to the cell's nucleus. The Notch/Lin-12/Glp-1 receptor family[23] was found to be involved in the specification of cell fates during development in Drosophila and C. elegans.[24]
The intracellular domain of Notch forms a complex with CBF1 and Mastermind to activate transcription of target genes. The structure of the complex has been determined.[25][26]
Pathway
Maturation of the notch receptor involves cleavage at the prospective extracellular side during intracellular trafficking in the Golgi complex.[27] This results in a bipartite protein, composed of a large extracellular domain linked to the smaller transmembrane and intracellular domain. Binding of ligand promotes two proteolytic processing events; as a result of proteolysis, the intracellular domain is liberated and can enter the nucleus to engage other DNA-binding proteins and regulate gene expression.
Notch and most of its ligands are transmembrane proteins, so the cells expressing the ligands typically must be adjacent to the notch expressing cell for signaling to occur.[
In the nematode C. elegans, two genes encode homologous proteins, glp-1 and lin-12. There has been at least one report that suggests that some cells can send out processes that allow signaling to occur between cells that are as much as four or five cell diameters apart.[citation needed]
The notch extracellular domain is composed primarily of small cystine-rich motifs called EGF-like repeats.[29]
Notch 1, for example, has 36 of these repeats. Each EGF-like repeat is composed of approximately 40 amino acids, and its structure is defined largely by six conserved cysteine residues that form three conserved disulfide bonds. Each EGF-like repeat can be modified by
The O-glucose on notch can be further elongated to a trisaccharide with the addition of two
To add another level of complexity, in mammals there are three Fringe GlcNAc-transferases, named lunatic fringe, manic fringe, and radical fringe. These enzymes are responsible for something called a "fringe effect" on notch signaling.[32] If Fringe adds a GlcNAc to the O-fucose sugar then the subsequent addition of a galactose and sialic acid will occur. In the presence of this tetrasaccharide, notch signals strongly when it interacts with the Delta ligand, but has markedly inhibited signaling when interacting with the Jagged ligand.[33] The means by which this addition of sugar inhibits signaling through one ligand, and potentiates signaling through another is not clearly understood.
Once the notch extracellular domain interacts with a ligand, an ADAM-family
Ligand interactions

Notch signaling is initiated when Notch receptors on the cell surface engage ligands presented in trans on opposing cells. Despite the expansive size of the Notch extracellular domain, it has been demonstrated that EGF domains 11 and 12 are the critical determinants for interactions with Delta.[37] Additional studies have implicated regions outside of Notch EGF11-12 in ligand binding. For example, Notch EGF domain 8 plays a role in selective recognition of Serrate/Jagged[38] and EGF domains 6-15 are required for maximal signaling upon ligand stimulation.[39] A crystal structure of the interacting regions of Notch1 and Delta-like 4 (Dll4) provided a molecular-level visualization of Notch-ligand interactions, and revealed that the N-terminal MNNL (or C2) and DSL domains of ligands bind to Notch EGF domains 12 and 11, respectively.[40] The Notch1-Dll4 structure also illuminated a direct role for Notch O-linked fucose and glucose moieties in ligand recognition, and rationalized a structural mechanism for the glycan-mediated tuning of Notch signaling.[40]
Synthetic Notch signaling
It is possible to engineer synthetic Notch receptors by replacing the extracellular receptor and intracellular transcriptional domains with other domains of choice. This allows researchers to select which ligands are detected, and which genes are upregulated in response. Using this technology, cells can report or change their behavior in response to contact with user-specified signals, facilitating new avenues of both basic and applied research into cell-cell signaling.[41] Notably, this system allows multiple synthetic pathways to be engineered into a cell in parallel.[42][43]
Function
The Notch signaling pathway is important for cell-cell communication, which involves gene regulation mechanisms that control multiple cell differentiation processes during embryonic and adult life. Notch signaling also has a role in the following processes:
- neuronal function and development[44][45][46][47]
- stabilization of arterial endothelial fate and angiogenesis[48]
- regulation of crucial cell communication events between myocardium during both the formation of the valve primordial and ventricular development and differentiation[49]
- cardiac valve homeostasis, as well as implications in other human disorders involving the cardiovascular system[50]
- timely cell lineage specification of both exocrine pancreas[51]
- influencing of binary fate decisions of cells that must choose between the secretory and absorptive lineages in the gut[52]
- expansion of the hematopoietic stem cell compartment during bone development and participation in commitment to the osteoblastic lineage, suggesting a potential therapeutic role for notch in bone regeneration and osteoporosis[53]
- expansion of the hemogenic endothelial cells along with signaling axis involving Hedgehog signaling and Scl[54]
- T cell lineage commitment from common lymphoid precursor [55]
- regulation of cell-fate decision in mammary glands at several distinct development stages[56]
- possibly some non-nuclear mechanisms, such as control of the Abl[28]
- Regulation of the mitotic/meiotic decision in the C. elegans germline[12]
- development of alveoli in the lung.[57]
It has also been found that Rex1 has inhibitory effects on the expression of notch in mesenchymal stem cells, preventing differentiation.[58]
Role in embryogenesis
The Notch signaling pathway plays an important role in cell-cell communication, and further regulates embryonic development.
Embryo polarity
Notch signaling is required in the regulation of polarity. For example, mutation experiments have shown that loss of Notch signaling causes abnormal anterior-posterior polarity in
Early studies in the nematode model organism C. elegans indicate that Notch signaling has a major role in the induction of mesoderm and cell fate determination.[12] As mentioned previously, C. elegans has two genes that encode for partially functionally redundant Notch homologs, glp-1 and lin-12.[61] During C. elegans, GLP-1, the C. elegans Notch homolog, interacts with APX-1, the C. elegans Delta homolog. This signaling between particular blastomeres induces differentiation of cell fates and establishes the dorsal-ventral axis.[62]
Role in somitogenesis
Notch signaling is central to somitogenesis. In 1995, Notch1 was shown to be important for coordinating the segmentation of somites in mice.[63] Further studies identified the role of Notch signaling in the segmentation clock. These studies hypothesized that the primary function of Notch signaling does not act on an individual cell, but coordinates cell clocks and keep them synchronized. This hypothesis explained the role of Notch signaling in the development of segmentation and has been supported by experiments in mice and zebrafish.[64][65][66] Experiments with Delta1 mutant mice that show abnormal somitogenesis with loss of anterior/posterior polarity suggest that Notch signaling is also necessary for the maintenance of somite borders.[63]
During
Role in epidermal differentiation
Notch signaling is known to occur inside ciliated, differentiating cells found in the first epidermal layers during early skin development.
Role in central nervous system development and function

Early findings on Notch signaling in central nervous system (CNS) development were performed mainly in Drosophila with mutagenesis experiments. For example, the finding that an embryonic lethal phenotype in Drosophila was associated with Notch dysfunction[70] indicated that Notch mutations can lead to the failure of neural and Epidermal cell segregation in early Drosophila embryos. In the past decade, advances in mutation and knockout techniques allowed research on the Notch signaling pathway in mammalian models, especially rodents.
The Notch signaling pathway was found to be critical mainly for neural
Neuron cell differentiation
The Notch pathway is essential for maintaining NPCs in the developing brain. Activation of the pathway is sufficient to maintain NPCs in a proliferating state, whereas loss-of-function mutations in the critical components of the pathway cause precocious neuronal differentiation and NPC depletion.[45] Modulators of the Notch signal, e.g., the Numb protein are able to antagonize Notch effects, resulting in the halting of cell cycle and the differentiation of NPCs.[75][76] Conversely, the fibroblast growth factor pathway promotes Notch signaling to keep stem cells of the cerebral cortex in the proliferative state, amounting to a mechanism regulating cortical surface area growth and, potentially, gyrification.[77][78] In this way, Notch signaling controls NPC self-renewal as well as cell fate specification.
A non-canonical branch of the Notch signaling pathway that involves the phosphorylation of STAT3 on the serine residue at amino acid position 727 and subsequent Hes3 expression increase (STAT3-Ser/Hes3 Signaling Axis) has been shown to regulate the number of NPCs in culture and in the adult rodent brain.[79]
In adult rodents and in cell culture, Notch3 promotes neuronal differentiation, having a role opposite to Notch1/2.[80] This indicates that individual Notch receptors can have divergent functions, depending on cellular context.
Neurite development
In vitro studies show that Notch can influence neurite development.[73] In vivo, deletion of the Notch signaling modulator, Numb, disrupts neuronal maturation in the developing cerebellum,[81] whereas deletion of Numb disrupts axonal arborization in sensory ganglia.[82] Although the mechanism underlying this phenomenon is not clear, together these findings suggest Notch signaling might be crucial in neuronal maturation.
Gliogenesis
In
Adult brain function
Apart from its role in development, evidence shows that Notch signaling is also involved in neuronal apoptosis, neurite retraction, and neurodegeneration of ischemic stroke in the brain[83] In addition to developmental functions, Notch proteins and ligands are expressed in cells of the adult nervous system,[84] suggesting a role in CNS plasticity throughout life. Adult mice heterozygous for mutations in either Notch1 or Cbf1 have deficits in spatial learning and memory.[74] Similar results are seen in experiments with presenilins1 and 2, which mediate the Notch intramembranous cleavage. To be specific, conditional deletion of presenilins at 3 weeks after birth in excitatory neurons causes learning and memory deficits, neuronal dysfunction, and gradual neurodegeneration.[85] Several gamma secretase inhibitors that underwent human clinical trials in Alzheimer's disease and MCI patients resulted in statistically significant worsening of cognition relative to controls, which is thought to be due to its incidental effect on Notch signalling.[86]
Role in cardiovascular development
The Notch signaling pathway is a critical component of cardiovascular formation and
Cardiac development
Notch signal pathway plays a crucial role in at least three cardiac development processes:
Atrioventricular (AV) canal development
- AV boundary formation
- Notch signaling can regulate the atrioventricular boundary formation between the AV canal and the chamber myocardium.
Studies have revealed that both loss- and gain-of-function of the Notch pathway results in defects in AV canal development.[88] In addition, the Notch target genes HEY1 and HEY2 are involved in restricting the expression of two critical developmental regulator proteins, BMP2 and Tbx2, to the AV canal.[89][90]
- AV epithelial-mesenchymal transition (EMT)
- Notch signaling is also important for the process of AV myocardium and by interendocardial signaling pathways to undergo EMT.[88] Notch1 deficiency results in defective induction of EMT. Very few migrating cells are seen and these lack mesenchymal morphology.[91] Notch may regulate this process by activating matrix metalloproteinase2 (MMP2) expression, or by inhibiting vascular endothelial (VE)-cadherin expression in the AV canal endocardium[92] while suppressing the VEGF pathway via VEGFR2.[93] In RBPJk/CBF1-targeted mutants, the heart valve development is severely disrupted, presumably because of defective endocardial maturation and signaling.[91]
Ventricular development
Some studies in
The downstream effector of Notch signaling, HEY2, was also demonstrated to be important in regulating ventricular development by its expression in the interventricular
Ventricular outflow tract development
During development of the aortic arch and the aortic arch arteries, the Notch receptors, ligands, and target genes display a unique expression pattern.[103] When the Notch pathway was blocked, the induction of vascular smooth muscle cell marker expression failed to occur, suggesting that Notch is involved in the differentiation of cardiac neural crest cells into vascular cells during outflow tract development.
Angiogenesis
Activation of Notch takes place primarily in "connector" cells and cells that line patent stable blood vessels through direct interaction with the Notch ligand, Delta-like ligand 4 (Dll4), which is expressed in the endothelial tip cells.[108] VEGF signaling, which is an important factor for migration and proliferation of endothelial cells,[109] can be downregulated in cells with activated Notch signaling by lowering the levels of Vegf receptor transcript.[110] Zebrafish embryos lacking Notch signaling exhibit ectopic and persistent expression of the zebrafish ortholog of VEGF3, flt4, within all endothelial cells, while Notch activation completely represses its expression.[111]
Notch signaling may be used to control the sprouting pattern of blood vessels during angiogenesis. When cells within a patent vessel are exposed to
Role in endocrine development
During development, definitive endoderm and ectoderm differentiates into several gastrointestinal epithelial lineages, including endocrine cells. Many studies have indicated that Notch signaling has a major role in endocrine development.
Pancreatic development
The formation of the pancreas from endoderm begins in early development. The expression of elements of the Notch signaling pathway have been found in the developing pancreas, suggesting that Notch signaling is important in pancreatic development.[112][113] Evidence suggests Notch signaling regulates the progressive recruitment of endocrine cell types from a common precursor,[114] acting through two possible mechanisms. One is the "lateral inhibition", which specifies some cells for a primary fate but others for a secondary fate among cells that have the potential to adopt the same fate. Lateral inhibition is required for many types of cell fate determination. Here, it could explain the dispersed distribution of endocrine cells within pancreatic epithelium.[115] A second mechanism is "suppressive maintenance", which explains the role of Notch signaling in pancreas differentiation. Fibroblast growth factor10 is thought to be important in this activity, but the details are unclear.[116][117]
Intestinal development
The role of Notch signaling in the regulation of gut development has been indicated in several reports. Mutations in elements of the Notch signaling pathway affect the earliest intestinal cell fate decisions during zebrafish development.[118] Transcriptional analysis and gain of function experiments revealed that Notch signaling targets Hes1 in the intestine and regulates a binary cell fate decision between adsorptive and secretory cell fates.[118]
Bone development
Early in vitro studies have found the Notch signaling pathway functions as down-regulator in
Role in cell cycle control
Notch signaling is critical for cell fate identity and differentiation and regulates these processes in part by controlling cell cycle progression. Specifically, Notch has been shown to promote cell cycle progression at the G1/S transition in various systems.
Photoreceptor development
In Drosophila eye development, photoreceptors undergo two waves of differentiation, where five out of eight photoreceptors differentiate in the first wave (R8, R2, R5, R3, and R4), and the other three differentiate in the second wave (R1, R6, and R7).[121] Notch has been shown to promote the second mitotic wave in Drosophila eye development.[122] Specifically, it mediates the G1/S transition by promoting dE2F activation (Drosophila E2F), a member of the E2F transcription factor family, which regulates the expression of genes important for cell proliferation, specifically those involved in the G1/S transition.[122][123] Notch does this by inhibiting RBF1 (the Drosophila homolog of the tumor suppressor Rb), which represses dE2F.[122] Additionally, Notch is required for cyclin A activation, which accumulates during the G1/S transition and may be involved in S phase onset.[122]
Health and disease
The role of Notch signaling in cell cycle regulation also has implications in health and disease. For example, Notch has been found to promote the expression of cyclin D3 and Cdk4/6 in human T-cells, thereby promoting the phosphorylation of Rb and facilitating the G1/S transition, implicating its role in cancer as several gain-of-function mutations in NOTCH1 have been identified in human acute T-cell lymphoblastic leukemias and lymphomas.[124][125] Additionally, in ventricular cardiomyocytes, which stop dividing shortly after birth, NOTCH2 signaling activation promotes cell cycle reentry.[98] It induces the expression and nuclear translocation of cyclin D, which along with Cdk4/6 promotes the phosphorylation of Rb and causes cell cycle progression through the G1/S transition.[98] This suggests that Notch signaling might regulate ventricular growth as well as cardiomyocyte regeneration, though this is unclear.[98]
Migratory identity
In the zebrafish trunk neural crest (TNC), cells migrate collectively in single-file chains, with a cell “leader” at the front of the chain that instructs the directionality of the trailing “follower” cells.[126] Notch has been found to specify cell migratory identity in the trunk neural crest – specifically, high Notch specifies leaders while low Notch specifies followers.[127] Further, cell cycle progression required for migration is regulated by Notch such that leader cells with high Notch activity quickly undergo the G1/S transition while cells with low Notch activity remain in the G1 phase for longer and thus become followers.[127]
Role in cancer
Leukemia
Aberrant Notch signaling is a driver of T cell acute lymphoblastic leukemia (T-ALL)[128] and is mutated in at least 65% of all T-ALL cases.[129] Notch signaling can be activated by mutations in Notch itself, inactivating mutations in FBXW7 (a negative regulator of Notch1), or rarely by t(7;9)(q34;q34.3) translocation. In the context of T-ALL, Notch activity cooperates with additional oncogenic lesions such as c-MYC to activate anabolic pathways such as ribosome and protein biosynthesis thereby promoting leukemia cell growth.[130]
Urothelial bladder cancer
Loss of Notch activity is a driving event in urothelial cancer. A study identified inactivating mutations in components of the Notch pathway in over 40% of examined human bladder carcinomas. In mouse models, genetic inactivation of Notch signaling results in Erk1/2 phosphorylation leading to tumorigenesis in the urinary tract.[131] As not all NOTCH receptors are equally involved in the urothelial bladder cancer, 90% of samples in one study had some level of NOTCH3 expression, suggesting that NOTCH3 plays an important role in urothelial bladder cancer. A higher level of NOTCH3 expression was observed in high-grade tumors, and a higher level of positivity was associated with a higher mortality risk. NOTCH3 was identified as an independent predictor of poor outcome. Therefore, it is suggested that NOTCH3 could be used as a marker for urothelial bladder cancer-specific mortality risk. It was also shown that NOTCH3 expression could be a prognostic immunohistochemical marker for clinical follow-up of urothelial bladder cancer patients, contributing to a more individualized approach by selecting patients to undergo control cystoscopy after a shorter time interval.[132]
Liver cancer
In hepatocellular carcinoma, for instance, it was suggesting that AXIN1 mutations would provoke Notch signaling pathway activation, fostering the cancer development, but a recent study demonstrated that such an effect cannot be detected.[133] Thus the exact role of Notch signaling in the cancer process awaits further elucidation.
Notch inhibitors
The involvement of Notch signaling in many cancers has led to investigation of
Mathematical modeling
Mathematical modeling in Notch-Delta signaling has become a pivotal tool in understanding pattern formation driven by cell-cell interactions, particularly in the context of lateral-inhibition mechanisms. The Collier model,[142] a cornerstone in this field, employs a system of coupled ordinary differential equations to describe the feedback loop between adjacent cells. The model is defined by the equations:
where and represent the levels of Notch and Delta activity in cell , respectively. Functions and are typically Hill functions, reflecting the regulatory dynamics of the signaling process. The term denotes the average level of Delta activity in the cells adjacent to cell , integrating juxtacrine signaling effects.
Recent extensions of this model incorporate long-range signaling, acknowledging the role of cell protrusions like filopodia (cytonemes) that reach non-neighboring cells.[143][144][145][146] One extended model, often referred to as the -Collier model,[143] introduces a weighting parameter to balance juxtacrine and long-range signaling. The interaction term is modified to include these protrusions, creating a more complex, non-local signaling network. This model is instrumental in exploring pattern formation robustness and biological pattern refinement, considering the stochastic nature of filopodia dynamics and intrinsic noise. The application of mathematical modeling in Notch-Delta signaling has been particularly illuminating in understanding the patterning of sensory organ precursors (SOPs) in the Drosophila's notum and wing margin.[147][148]
The mathematical modeling of Notch-Delta signaling thus provides significant insights into lateral inhibition mechanisms and pattern formation in biological systems. It enhances the understanding of cell-cell interaction variations leading to diverse tissue structures, contributing to developmental biology and offering potential therapeutic pathways in diseases related to Notch-Delta dysregulation.
See also
- Alagille syndrome
- Netpath– A curated resource of signal transduction pathways in humans
References
- ^ PMID 10221902.
- ^ S2CID 43654713.
- PMID 10882063.
- PMID 17404512.
- PMID 19907488.
- S2CID 205050842.
- S2CID 84050307.
- ISBN 978-0-8240-1384-4.
- PMID 3935325.
- PMID 3097517.
- S2CID 40668388.
- ^ S2CID 31484517.
- S2CID 6282210.
- PMID 3000611.
- PMID 11604511.
- PMID 8406001.
- S2CID 27966283.
- S2CID 45604279.
- S2CID 10828910.
- S2CID 4431882.
- ^ PMID 22785620.
- PMID 11134525.
- PMID 7716513.
- S2CID 17455442.
- S2CID 17809522.
- S2CID 9224353.
- S2CID 13909969.
- ^ S2CID 6930563.
- PMID 16973733.
- PMID 12460944.
- PMID 17132502.
- PMID 17215308.
- PMID 12826675.
- PMID 19726682.
- ISBN 0470016175.
- PMID 22223095.
- S2CID 12643727.
- S2CID 12643727.
- ^ "Intrinsic selectivity of Notch 1 for Delta-like 4 over Delta-like 1". Journal of Biological Chemistry. 2013.
- ^ PMID 25700513.
- PMID 29374062.
- PMID 26971630.
- PMID 27372731.
- PMID 12052917.
- ^ PMID 17409286.
- PMID 20844536.
- PMID 11937492.
- PMID 12482957.
- ^ PMID 17336907.
- ^ The notch signaling pathway in cardiac development and tissue homeostasis[permanent dead link ]
- PMID 14657333.
- PMID 15034002.
- ^ PMID 15695512.
- PMID 23236128.
- PMID 18434124.
- PMID 15535842.
- PMID 19369400.
- PMID 20463961.
- PMID 18708576.
- S2CID 15211728.
- PMID 1769331.
- ISBN 978-1-60535-470-5.[page needed]
- ^ PMID 7789282.
- S2CID 4331445.
- PMID 9007237.
- PMID 15866159.
- S2CID 10822545.
- S2CID 8927528.
- PMID 27354375.
- PMID 16588136.
- ^ S2CID 16444353.
- ^ PMID 11245575.
- ^ S2CID 14774606.
- ^ S2CID 15150614.
- PMID 9169836.
- S2CID 6525042.
- PMID 22031906.
- PMID 23804101.
- S2CID 4372065.
- PMID 25164209.
- PMID 14729486.
- PMID 15598981.
- PMID 19853579.
- S2CID 8329715.
- S2CID 17550860.
- PMID 25417150.
- PMID 22399350.
- ^ PMID 18497317.
- PMID 17021042.
- PMID 17259303.
- ^ PMID 14701881.
- PMID 15604224.
- PMID 14988227.
- PMID 10934030.
- PMID 16690879.
- PMID 19064701.
- PMID 18824567.
- ^ PMID 18838555.
- PMID 24474765.
- ^ Teske CM. "An Evolving Role for Notch Signaling in Heart Regeneration of the Zebrafish Danio rerio". Researchgate.com. Retrieved 4 October 2022.
- PMID 16140292.
- PMID 17468400.
- PMID 17273555.
- S2CID 4407198.
- PMID 17251261.
- PMID 17296940.
- S2CID 4349541.
- ^ PMID 19329884.
- PMID 11166270.
- PMID 16219802.
- PMID 11585794.
- S2CID 4338027.
- S2CID 9931966.
- PMID 12941629.
- S2CID 52872659.
- PMID 14699589.
- PMID 14651921.
- ^ PMID 15689380.
- PMID 12411305.
- S2CID 1881239.
- PMID 24014422.
- ^ PMID 15809035.
- PMID 9556498.
- PMID 19001083.
- PMID 16298817.
- PMID 27210753.
- ^ PMID 35438077.
- PMID 17698635.
- S2CID 24049536.
- PMID 17114293.
- S2CID 5390234.
- PMID 35073251.
- PMID 38848383.
- PMID 22399357.
- PMID 23458608.
- ^ "Notch inhibitors could help overcome therapy resistance in ER-positive breast cancer". 2015. Archived from the original on 2015-02-05. Retrieved 2015-02-05.
- PMID 31424097.
- S2CID 4912558.
- S2CID 206323361.
- PMID 34485296.
- PMID 30982678.
- PMID 9015458.
- ^ PMID 37142213.
- PMID 26748293.
- )
- PMID 21084342.
- PMID 30030823.
- PMID 27226324.
External links
- Diagram: notch signaling pathway in Homo sapiens
- Diagram: Notch signaling in Drosophila Archived 2017-11-09 at the Wayback Machine
- Notch+Receptors at the U.S. National Library of Medicine Medical Subject Headings (MeSH)