ADP ribosylation factor

Source: Wikipedia, the free encyclopedia.
SCOP2
1hur / SCOPe / SUPFAM
OPM superfamily124
OPM protein1ksg
CDDcd00878
Membranome1103
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
Distribution of ARF in a living macrophage, highlighting the Golgi apparatus.

ADP ribosylation factors (ARFs) are members of the ARF family of

vesicular traffic and actin
remodelling.

The small ADP ribosylation factor (Arf) GTP-binding proteins are major regulators of vesicle biogenesis in intracellular traffic.[1] They are the founding members of a growing family that includes Arl (Arf-like), Arp (Arf-related proteins) and the remotely related Sar (Secretion-associated and Ras-related) proteins. Arf proteins cycle between inactive GDP-bound and active GTP-bound forms that bind selectively to effectors. The classical structural GDP/GTP switch is characterised by conformational changes at the so-called switch 1 and switch 2 regions, which bind tightly to the gamma-phosphate of GTP but poorly or not at all to the GDP nucleotide. Structural studies of Arf1 and Arf6 have revealed that although these proteins feature the switch 1 and 2 conformational changes, they depart from other small GTP-binding proteins in that they use an additional, unique switch to propagate structural information from one side of the protein to the other.

The GDP/GTP structural cycles of human Arf1 and Arf6 feature a unique conformational change that affects the beta2beta3 strands connecting switch 1 and switch 2 (interswitch) and also the amphipathic helical N-terminus. In GDP-bound Arf1 and Arf6, the interswitch is retracted and forms a pocket to which the N-terminal helix binds, the latter serving as a molecular hasp to maintain the inactive conformation. In the GTP-bound form of these proteins, the interswitch undergoes a two-residue register shift that pulls switch 1 and switch 2 up, restoring an active conformation that can bind GTP. In this conformation, the interswitch projects out of the protein and extrudes the N-terminal hasp by occluding its binding pocket.

Regulatory proteins

ARFs regularly associate with two types of protein, those involved in catalyzing GTP/GDP exchange, and those that serve other functions. ARFs act as a regulatory subunit that control coat assembly in coat protein I (

clathrin-coated vesicles.[citation needed
]

GTP/GDP exchange proteins

ARF binds to two forms of the guanosine nucleotide,

force ARF to adopt a new GTP molecule in place of a bound GDP.

Other proteins

Other proteins interact with ARF, depending upon whether or not it is bound to GTP or GDP. The active form, ARF*GTP, binds to vesicle coat proteins and adaptors, including coat protein I (COPI) and various phospholipids. The inactive form is only known to bind to a class of transmembrane proteins. Different types of ARF bind specifically different kinds of effector proteins.

Phylogeny

There are currently 6 known mammalian ARF proteins, which are divided into three classes of ARFs:

Structure

ARFs are small proteins of approximately 20

kD in size. They contain two switch regions, which change relative positions between cycles of GDP/GTP-binding. ARFs are frequently myristoylated
in their N-terminal region, which contributes to their membrane association.

Examples

Human genes encoding proteins containing this domain include:

See also

References

Further reading

External links

This article incorporates text from the public domain Pfam and InterPro: IPR006689