Farallon Plate

Source: Wikipedia, the free encyclopedia.
Map of the Panthalassic ocean c. 180 mya, showing the position of the Farallon Plate

The Farallon Plate was an ancient oceanic plate. It formed one of the three main plates of Panthalassa, alongside the Izanagi Plate and the Phoenix Plate, which were connected by a triple junction. The Farallon Plate began subducting under the west coast of the North American Plate—then located in modern Utah—as Pangaea broke apart and after the formation of the Pacific Plate at the centre of the triple junction during the Early Jurassic. It is named for the Farallon Islands, which are located just west of San Francisco, California.

Over time, the central part of the Farallon Plate was completely subducted under the southwestern part of the North American Plate. The remains of the Farallon Plate are the

Gorda, and Juan de Fuca plates, subducting under the northern part of the North American Plate; the Cocos Plate subducting under Central America; and the Nazca Plate subducting under the South American Plate.[1]

The Farallon Plate is also responsible for transporting old island arcs and various fragments of continental crustal material rifted off from other distant plates and accreting them to the North American Plate.

These fragments from elsewhere are called terranes (sometimes, "exotic" terranes). Much of western North America is composed of these accreted terranes.

Formation of the Juan de Fuca (including Explorer and Gorda) and Cocos plates (including Rivera) and of the San Andreas Fault from the Farallon plate

Current state

Region of the modern Cascadia subduction zone

The understanding of the Farallon Plate is rapidly evolving as details from seismic tomography provide improved details of the submerged remnants.[2] Since the North American west coast shows a convoluted structure, significant work has been required to resolve the complexity. In 2013 a new and more nuanced explanation emerged, proposing two additional now-subducted plates which would account for some of the complexity.[3]

Historic view

As data accumulated, a common view developed that one large oceanic plate, the Farallon plate, acted as a conveyor belt, conveying terranes to North America's west coast, where they accreted. As the continent overran the subducting Farallon plate, the denser plate became subducted into the mantle below the continent. When the plates converged, the dense oceanic plate sank into the mantle to form a slab below the lighter continent.[4]

Farallon Plate subduction forms North American Cordillera

A software model by NASA of the remnants of the Farallon Plate, deep in Earth's mantle

As of 2013, it is generally accepted that the western quarter of North America consists of accreted

microcontinents (similar to those in the modern-day Indonesian Archipelago) as it moves west in the following sequence:[5]

When the final archipelago, the Siletzia archipelago, lodged as a terrane, the associated trench stepped west as the terrane accreted, converting an intra-oceanic subduction trench into the current Cascadia subduction zone and creating a slab window.[6]

See also

References

Notes

Bibliography

External links