Finger millet

Source: Wikipedia, the free encyclopedia.

Finger millet
Scientific classification Edit this classification
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Monocots
Clade: Commelinids
Order: Poales
Family: Poaceae
Genus: Eleusine
Species:
E. coracana
Binomial name
Eleusine coracana
Synonyms[1]
  • Cynodon coracanus Raspail
  • Cynosurus coracanus L.
  • Eleusine cerealis Salisb. nom. illeg.
  • Eleusine dagussa Schimp.
  • Eleusine luco Welw. nom. inval.
  • Eleusine ovalis Ehrenb. ex Sweet nom. inval.
  • Eleusine pilosa Gilli
  • Eleusine reniformis Divak.
  • Eleusine sphaerosperma Stokes nom. illeg.
  • Eleusine stricta Roxb.
  • Eleusine tocussa Fresen.
MHNT
)

Finger millet (Eleusine coracana) is an

tetraploid and self-pollinating species probably evolved from its wild relative Eleusine africana.[2]

Finger millet is native to the Ethiopian and Ugandan highlands.[3] Interesting crop characteristics of finger millet are the ability to withstand cultivation at altitudes over 2,000 metres (6,600 ft) above sea level, its high drought tolerance, and the long storage time of the grains.[2]

History

Finger millet originated in East Africa (Ethiopian and Ugandan highlands). It was claimed to have been found in an Indian archaeological site dated to 1800 BCE (Late Bronze Age);[4] however, this was subsequently demonstrated to be incorrectly identified cleaned grains of hulled millets.[5][6] The oldest record of finger millet comes from an archaeological site in Africa dating to the 8th century AD.[7]

By 1996, cultivation of finger millet in Africa was declining rapidly because of the large amount of labor it required, with farmers preferring to grow nutritionally-inferior but less labor-intensive crops such as maize, sorghum, and cassava.[2]: 39–40  Such a decline was not seen in Asia, however.[2]: 42 

Taxonomy and botanical description

Finger millet is under the genus Eleusine Gaertn.[8][9]

Growing regions

Main cultivation areas are parts of eastern and southern Africa – particularly Uganda, Kenya, the Democratic Republic of the Congo, Zimbabwe, Zambia, Malawi, and Tanzania – and parts of India and Nepal.[2]: 42, 52  It is also grown in southern Sudan[2]: 39  and "as far south" in Africa as Mozambique.[2]: 56 

Climate requirements

Finger millet is a

short-day plant with a growing optimum 12 hours of daylight for most varieties. Its main growing area ranges from 20°N to 20°S, meaning mainly the semiarid to arid tropics. Nevertheless, finger millet is found to be grown at 30°N in the Himalaya region (India and Nepal). It is generally considered as a drought-tolerant crop, but compared with other millets, such as pearl millet and sorghum, it prefers moderate rainfall (500 millimetres (20 in) annually). The majority of worldwide finger millet farmers grow it rainfed, although yields often can be significantly improved when irrigation is applied. In India, finger millet is a typical rabi (dry-winter season) crop. Heat tolerance of finger millet is high. For Ugandan finger millet varieties, for instance, the optimal average growth temperature ranges at about 27 °C, while the minimal temperatures should not be lower than 18 °C. Relative to other species (pearl millet and sorghum), finger millet has a higher tolerance to cool temperatures. It is grown from about 500 to 2,400 metres (1,600 to 7,900 ft) above sea level (e.g. in Himalaya region). Hence, it can be cultivated on higher elevations than most tropical crops. Finger millet can grow on various soils, including highly weathered tropical lateritic soils. It thrives in free-draining soils with steady moisture levels. Furthermore, it can tolerate soil salinity up to a certain extent. Its ability to bear waterlogging is limited, so good drainage of the soils and moderate water-holding capacity are optimal.[2] Finger millet can tolerate moderately acidic soils (pH 5), but also moderately alkaline soils (pH 8.2).[10]

Cropping systems

Fields of finger millet in the Annapurna region of Nepal

Finger millet monocrops grown under rainfed conditions are most common in drier areas of Eastern Africa. In addition, intercropping with legumes, such as cowpea or pigeon pea, are also quite common in East Africa. Tropical Central Africa supports scattered regions of finger millet intercropping mostly with legumes, but also with cassava, plantain, and vegetables.[2]

Most common finger millet intercropping systems in South India are as follows:[citation needed]

Weeds

Weeds are the major biotic stresses for finger millet cultivation. Its seeds are very small, which leads to a relatively slow development in early growing stages. This makes finger millet a weak competitor for light, water, and nutrients compared with weeds.[11] In East and Southern Africa, the closely related species Eleusine indica (common name Indian goose grass) is a severe weed competitor of finger millet. Especially in early growing stages of the crop and the weed and when broadcast seeding instead of row seeding is applied (as often the case in East Africa), the two species are very difficult to distinguish.[2] Besides Eleusine indica, the species Xanthium strumarium, which is animal dispersed and the stolon-owning species Cyperus rotondus and Cynodon dactylon are important finger millet weeds.[11] Measures to control weeds include cultural, physical, and chemical methods. Cultural methods could be sowing in rows instead of broadcast sowing to make distinction between finger millet seedlings and E. indica easier when hand weeding.[2] ICRISAT promotes cover crops and crop rotations to disrupt the growing cycle of the weeds. Physical weed control in financial resource-limited communities growing finger millet are mainly hand weeding or weeding with a hand hoe.[11]

Diseases and pests

Finger millet is generally seen as not very prone to diseases and pests. Nonetheless, finger millet blast, caused by the fungal pathogen

seed dressings with fungicides, such as trycyclozole.[11][14]

Striga, a parasitic weed which occurs naturally in parts of Africa, Asia, and Australia, can severely affect the crop and yield losses in finger millet and other cereals by 20 to 80%.[15] Striga can be controlled with limited success by hand weeding, herbicide application, crop rotations, improved soil fertility, intercropping and biological control.[16] The most economically feasible and environmentally friendly control measure would be to develop and use Striga-resistant cultivars.[17] Striga resistant genes have not been identified yet in cultivated finger millet but could be found in crop wild relatives of finger millet.[18] Another pathogen in finger millet cultivation is the fungus Helminthosporium nodulosum, causing leaf blight.[10] Finger millet pests are bird predators, such as quelea in East Africa.[2]

Insects

The pink stem borer (Sesamia inferens) and the finger millet shoot fly (Atherigona miliaceae)[19] are considered as the most relevant insect pests in finger millet cultivation.[10] Measures to control Sesamia inferens are uprooting of infected plants, destroying of stubbles, having a crop rotation, chemical control with insecticides, biological measures such as pheromone traps, or biological pest control with the use of antagonistic organisms (e.g. Sturmiopsis inferens).[20]

Other insect pests include:[21]

Root feeders
  • root aphid
    Tetraneura nigriabdominalis
Shoot and stem feeders
Leaf feeders
Sucking pests

Propagation and sowing

Ragi Plant

Propagation in finger millet farming is done mainly by seeds. In rainfed cropping, four sowing methods are used:[22]

  • Broadcasting: Seeds are directly sown in the field. This is the common method because it is the easiest way and no special machinery is required. The organic weed management with this method is a problem, because it is difficult to distinguish between weed and crop.
  • Line Sowing: Improved sowing compared to broadcasting. Facilitates organic weed management due to better distinction of weed and crop. In this method, spacing of 22 cm to 30 cm between lines and 8 cm to 10 cm within lines should be maintained. The seeds should be sown about 3 cm deep in the soil.
  • Drilling in rows: Seeds are sown directly in the untreated soil by using a direct-seed drill. This method is used in conservation agriculture.
  • Transplanting the seedlings: Raising the seedlings in nursery beds and transplant to the main field. Leveling and watering of beds is required during transplanting. Seedlings with 4 weeks age should be transplanted in the field. For early Rabi and Kharif season, seedlings should be transplanted at 25 cm x 10 cm and for late Kharif season at 30 cm x 10 cm. Planting should be done 3 cm depth in the soil

Harvest

Finger millet sprays in Uganda

Crop does not mature uniformly and hence the harvest is to be taken up in two stages. When the earhead on the main shoot and 50% of the earheads on the crop turn brown, the crop is ready for the first harvest. At the first harvest, all earheads that have turned brown should be cut. After this drying, threshing and cleaning the grains by winnowing. The second harvest is around seven days after the first. All earheads, including the green ones, should be cut. The grains should then be cured to obtain maturity by heaping the harvested earheads in shade for one day without drying, so that the humidity and temperature increase and the grains get cured. After this drying, threshing and cleaning as after the first harvesting.[2]

Storage

Once harvested, the

moulds. Finger millet can be kept for up to 10 years when it is unthreshed. Some sources report a storage duration up to 50 years under good storage conditions.[2] The long storage capacity makes finger millet an important crop in risk-avoidance strategies as a famine crop for farming communities.[2]

Processing

Milling

As a first step of processing finger millet can be milled to produce

whole grain flour. This has disadvantages, such as reduced storage time of the flour due to the high oil content. Furthermore, the industrial use of whole grain finger millet flour is limited. Moistening the millet seeds prior to grinding helps to remove the bran mechanically without causing damage to the rest of the seed. The mini millet mill can also be used to process other grains such as wheat and sorghum.[citation needed
]

Malting

Another method to process the finger millet grain is germinating the seed. This process is also called malting and is very common in the production of brewed beverages such as beer. When finger millet is germinated, enzymes are activated, which transfer starches into other carbohydrates such as sugars. Finger millet has a good malting activity. The malted finger millet can be used as a substrate to produce for example gluten-free beer or easily digestible food for infants.[2]

Finger millet in its commonly consumed form as a porridge

Nutrition

Finger millet
Nutritional value per 100 g (3.5 oz)
Energy1,283 kJ (307 kcal)
53.5 g
Dietary fiber22.6 g
1.9 g
7.4 g
MineralsQuantity
%DV
Calcium
26%
344 mg
Iron
63%
11.3 mg
Magnesium
37%
154 mg
Phosphorus
15%
183 mg
Potassium
18%
538 mg
Sodium
0%
2 mg
Zinc
15%
1.7 mg
Other constituentsQuantity
Water11 g

Percentages estimated using US recommendations for adults,[23] except for potassium, which is estimated based on expert recommendation from the National Academies.[24]

Finger millet is 11% water, 7%

Daily Value, DV) of dietary fiber and several dietary minerals, especially iron
at 87% DV (table).

Growing finger millet to improve nutrition

The

ICRISAT), a member of the CGIAR consortium, partners with farmers, governments, researchers and NGOs to help farmers grow nutritious crops, including finger millet. This helps their communities have more balanced diets and become more resilient to pests and drought. For example, the Harnessing Opportunities for Productivity Enhancement of Sorghum and Millets in Sub-Saharan Africa and South Asia (HOPE) project is increasing yields of finger millet in Tanzania by encouraging farmers to grow improved varieties.[25]

Use

Finger millet can be

fermented drink (or beer) in Nepal and in many parts of Africa. The straw
from finger millet is used as animal fodder.

In India

Balls of dense finger millet porridge (ragi mudde) in Karnataka

Finger millet is a staple grain in many parts of India, especially

Kannada ರಾಗಿ rāgi). It is malted and its grain is ground into flour. The flour is consumed with milk, boiled water, or yogurt. The flour is made into flatbreads, including thin, leavened dosa and thicker, unleavened roti
.

There are numerous ways to prepare finger millet, including

conjee. In the Malnad region of Karnataka, the whole ragi grain is soaked and the milk is extracted to make a dessert known as keelsa. A type of flat bread is prepared using finger millet flour (called ragi rotti in Kannada) in Northern districts of Karnataka
.

In Tamil Nadu, ragi is called kezhvaragu (கேழ்வரகு) and also has other names like keppai, ragi, and ariyam.

halwa but without sugar. In the Kumaon region, ragi is traditionally fed to women after child birth. In some parts of Kumaon region the ragi flour is used to make various snacks like namkeen sev, mathri and chips
.

In South and Far East Asia

In Nepal, a thick dough (ḍhĩḍo) made of millet flour (kōdō) is cooked and eaten by hand. The dough, on other hand, can be made into thick bread (rotee) spread over flat utensil and heating it. Fermented millet is used to make a beer chhaang and the mash is distilled to make a liquor (rakśiशी). Whole grain millet is fermented to make tongba. Its use in holy Hindu practices is barred especially by upper castes. In Nepal, the National Plant Genetic Resource Centre at Khumaltar maintains 877 accessions (samples) of Nepalese finger millet (kodo).[27][28]

In Sri Lanka, finger millet is called kurakkan and is made into kurakkan roti – an earthy brown thick roti with coconut and thallapa – a thick dough made of ragi by boiling it with water and some salt until like a dough ball. It is then eaten with a spicy meat curry and is usually swallowed in small balls, rather than chewing. It is also eaten as a porridge (kurrakan kenda) and as a sweet called 'Halape'. In northwest Vietnam, finger millet is used as a medicine for women at childbirth. A minority use finger millet flour to make alcohol.

As beverage

Ragi malt porridge is made from finger millet which is soaked and shadow dried, then roasted and ground. This preparation is boiled in water and used as a substitute for milk powder-based beverages.

Gallery

  • Finger millet
    Finger millet
  • Multicolored finger millet grains
    Multicolored finger millet grains
  • Pappad made of finger millet
    Pappad made of finger millet
  • Ragi mudde and bhajji with sambar and chutney
    Ragi mudde and
    bhajji with sambar and chutney
  • Roti
    Roti
  • Ragi idli
    Ragi idli
  • Idli, a South Indian breakfast dish made from ragi flour
    Idli, a South Indian breakfast dish made from ragi flour
  • Chhaang
    Chhaang

References

  1. ^ "The Plant List: A Working List of All Plant Species". Retrieved 8 January 2015.
  2. ^ .
  3. , 1999.
  4. .
  5. .
  6. (PDF) from the original on 2022-10-09.
  7. .
  8. .
  9. .
  10. ^ .
  11. ^ a b c d e f g Mgonja A, Ojulong M, Audi P, Manyasa E, Ojulong H (2011). "INTEGRATED BLAST AND WEED MANAGEMENT AND MICRODOSING IN FINGER MILLET: A HOPE PROJECT MANUAL FOR INCREASING FINGER MILLET PRODUCTIVITY IN EASTERN AFRICA". ICRISAT (International Crops Research Institute for Semi Arid Tropics).
  12. ^ Takan JP, Muthumeenakshi S, Sreenivasaprasad S, Talbot NJ (2004). "Molecular markers and mating type assays to characterise finger millet blast pathogen populations in East Africa". Poster Presented at British Mycological Society (BMS) Meeting, "Fungi in the Environment", Nottingham.
  13. S2CID 225135026
    .
  14. ^ Sreenivasaprasad S, Takan JP, Mgonja MA, Manyasa EO, Kaloki P, Wanyera N, Okwade AM, Muthumeenakshi S, Brown AE, Lenné JM (2005). "Enhancing finger millet production and utilisation in East Africa through improved blast management and stakeholder connectivity". Aspects of Applied Biology. 75: 11–22.
  15. ISSN 2151-7517
    .
  16. (PDF) from the original on 2022-10-09.
  17. .
  18. .
  19. .
  20. ^ Samiksha, S. "Pink Stem Borer (Sesamia inference): Nature, Life Cycle and Control".
  21. OCLC 967265246
    .
  22. ^ "Finger Millet Farming". Agri Farming India. 2015-05-18.
  23. ^ United States Food and Drug Administration (2024). "Daily Value on the Nutrition and Supplement Facts Labels". Retrieved 2024-03-28.
  24. PMID 30844154.{{cite book}}: CS1 maint: multiple names: authors list (link
    )
  25. ^ "Harnessing Opportunities for Productivity Enhancement (HOPE) of Sorghum and Millets – ICRISAT". www.icrisat.org. Retrieved 2023-04-13.
  26. ^ "Live Chennai: Health benefits of millet (Ragi),Health benefits of millet,Health benefits of Ragi,Health benefits,Ragi".
  27. ISSN 2091-2609
    .
  28. ^ LI-BIRD. "Released and promising crop varieties for mountain agriculture in Nepal" (PDF). Archived (PDF) from the original on 2022-10-09.

External links