Proteaceae

Source: Wikipedia, the free encyclopedia.

Proteaceae
Temporal range: Cenomanian–recent [1]
Inflorescence of Protea cynaroides
Scientific classification Edit this classification
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Eudicots
Order: Proteales
Family: Proteaceae
Juss.[2]
Genera

About 80, see text

The Proteaceae

Gevuina avellana
on a smaller scale.

Etymology

The name Proteaceae was adapted by Robert Brown from the name Proteae coined in 1789 for the family by Antoine Laurent de Jussieu, based on the genus Protea, which in 1767, Carl Linnaeus derived from the name of the Greek god Proteus, a deity who was able to change between many forms.[4][5] This is an appropriate image, seeing as the family is known for its astonishing variety and diversity of flowers and leaves.[citation needed]

Description

Rhopala heterophylla

The genera of Proteaceae are highly varied, with Banksia in particular providing a striking example of adaptive radiation in plants.[6] This variability makes it impossible to provide a simple, diagnostic identification key for the family, although individual genera may be easily identified.

  • Proteaceae range from prostrate shrubs to tall forest trees, of 40 m in height, and are usually of medium height or low or perennial shrubs, except for some Stirlingia species that are herbs. Some species are facultatively deciduous (Embothrium coccineum), rarely acaulescent, the cauline portion of the collar is often thickened (lignotuber). Indumentum of three-celled hairs, sometimes glandular, rarely absent, the apical cell is usually elongated, acute, sometimes equally or unequally bifid.
  • mesophyll tissue usually with sclerenchymatous idioblasts, rare secretory cavities. Brachy-paracytic stomata (laterocytic in Bellendena
    ).

Plant stems with two types of radii, wide and multi-serrated or narrow and uni-serrated, phloem stratified or not, trilacunar nodes with three leaf traces (rarely unilacunar with one trace), sclereids frequent; bark with lenticels frequently horizontally enlarged, cork cambium present, usually superficial. Roots lateral and short, often grouped in bundles (proteoid roots) with very dense root hairs, rarely with mycorrhiza.

  • Plants usually hermaphroditic, more rarely monoecious, dioecious or andromonoecious.
  • Inflorescences very variable, simple or compound, axillary or terminal, lateral flowers solitary or in pairs, rarely with a terminal flower, racemiform, paniculate or condensed, usually with bracts, sometimes converted into leaves or squamiform, forming a type of cone, or with bright colours, forming an involucre or pseudanthium, the peduncles and pedicels sometimes contracted, compacted with the rachis, in some cases the congested inflorescences form super inflorescences (some Alloxylon); very rarely the flowers are solitary and axillary near the end of branches; in species with lignotubers the flowers sometimes grow from these and pass through the soil (geophytes).
  • style usually developed, stigma small or in the shape of a terminal or sub terminal disk or even lateral and oblique, often indented, papilous, moist or dry, ovules 1–100 or more per carpel, anatropous, hemianatropous, amphitropous or orthotropous, mostly hemitropous, bitegmic, crassinucellate, chalaza with a ring of vascular bundles, the funiculus is occasionally absent and the ovule is fused to the placenta, marginal placentation
    with various dispositions or apical.
  • Fruit dehiscent or indehiscent, in achene or nucule, follicle, drupe (with lignified endocarp) or falsely drupal (with lignified internal mesocarp), sometimes similar to a caryopsis as it is fused to the wall of the ovary and the testa, often lignified and serotinous; the fruit from the same inflorescence are sometimes fused forming a syncarp.
  • Seeds 1-many, sometimes winged, flat to rounded, with endosperm absent, present in Bellendina, endotesta with an unusual layer containing crystals of calcium oxalate that is rarely absent, well differentiated embryo, straight, dicotyledonous, but often with 3 or more (up to 9) large cotyledons, often auriculate.
  • Pollen in monads, triangular in polar view, (2-)3(−8)-aperturate, usually isopolar and triporate, biporate in Embothrium and the tribe Banksieae, colpoidate in Beauprea, spherical in Aulax and Franklandia or strongly anisopolar in some species of Persoonia; the openings of the former's tetrads follow Garside's Law.[clarification needed]
  • Chromosomal number: n=5, 7, 10–14, 26, 28; sizes range from very small (average of 1,0 μm) to very big (average of 14,4 μm) according to species; x=7, 12.

Flowers

pin-cushion hakea
(Hakea laurina)

Generally speaking, the diagnostic feature of Proteaceae is the compound

style-end that presents the pollen to the pollinator.[7]

Proteaceae flower parts occur in fours, but the four

nectaries begin to produce nectar
. At this time, the perianth splits into its component tepals, the cup splits apart, and the pistil is released to spring more or less upright.

Ecology

Inflorescence of Protea caffra

Many of the Proteaceae have specialised

water mould, and generally intolerant of fertilization. Due to these specialized proteoid roots, the Proteaceae are one of few flowering plant families that do not form symbioses with arbuscular mycorrhizal fungi. They exude large amounts of organic acids (citric acid and malic acid) every 2–3 days in order to aid the mobilization and absorption of phosphate. Many species are fire-adapted (pyrophytes), meaning they have strategies for surviving fires that sweep through their habitat. Some are resprouters, and have a thick rootstock buried in the ground that shoots up new stems after a fire, and others are reseeders
, meaning the adult plants are killed by the fire, but disperse their seeds, which are stimulated by the smoke to take root and grow. The heat was previously thought to have stimulated growth, but the chemicals in the smoke have now been shown to cause it.

There are four dioecious genera (

bats). The latter two means were evolutionarily derived from entomophily in different, independent events. The dispersion of some species exhibit the curious phenomenon of serotiny, which is associated with their pyrophytic behaviour: these trees accumulate fruits on their branches whose outer layers or protective structures (bracts) are highly lignified and resistant to fire. The fruit only release their seeds when they have been burnt and when the ground has been fertilized with ashes from the fire and is free from competitors. Many species have seeds with elaiosomes that are dispersed by ants; the seeds with wings or thistledown exhibit anemochory, while the drupes and other fleshy fruit exhibit endozoochory
as mammals and birds ingest them. Some African and Australian rodents are known to accumulate fruit and seeds of these plants in their nests in order to feed on them, although some manage to germinate.

Distribution

Proteaceae are mainly a Southern Hemisphere family, with its main centres of diversity in Australia and South Africa. It also occurs in Central Africa, South and Central America, India, eastern and south eastern Asia, and Oceania.[8] Only two species are known from New Zealand, although fossil pollen evidence suggests there were more previously.[9]

It is a good example of a Gondwanan family, with taxa occurring on virtually every land mass considered a remnant of the ancient supercontinent Gondwana, except Antarctica. The family and subfamilies are thought to have diversified well before the fragmentation of Gondwana, implying all of them are well over 90 million years old. Evidence for this includes an abundance of proteaceous pollen found in the Cretaceous coal deposits of the South Island of New Zealand. It is thought to have achieved its present distribution largely by continental drift rather than dispersal across ocean gaps.[10]

Phytochemistry

Fruit of Brabejum stellatifolium

No conclusive studies have been carried out on the chemical substances present in this broad family. The genera

flavonols (kaempferol, quercetin and myricetin) and arbutin. Alkaloids are usually absent. Iridoids and ellagic acid are also absent. Saponins and sapogenins can be either present or absent in different species. Many species accumulate aluminium
.

Leucadendron argenteum

Uses and cultivation

Edible nuts of Macadamia

Many traditional cultures have used Proteaceae as sustenance, medicine, for curing animal hides, as a source of dyes, firewood and as wood for construction. Aboriginal Australians eat the fruit of

Telopea. This use has resulted in the introduction of exotic species that have become invasive; examples include the hakea willow (Hakea salicifolia) and the silky hakea (Hakea sericea
) in Portugal.

Two species of Macadamia are cultivated commercially for their edible nuts.

Gevuina avellana (Chilean hazel) is also cultivated for its edible nuts, in Chile and New Zealand, and they are also used in the pharmaceutical industry for their humectant properties and as an ingredient in sunscreens. It is the most cold-resistant of the tree families that produce nuts.[citation needed] It is also planted in the British Isles and on the Pacific coast of the United States for its tropical appearance and its ability to grow in cooler climates
.

Many Proteaceae species are cultivated by the

nursery industry as barrier plants and for their prominent and distinctive flowers and foliage. Some species are of importance to the cut flower industry, especially some Banksia and Protea species. Two species of the genus Macadamia
are grown commercially for edible nuts.

Sugarbushes (

Cape Floral Kingdom, the smallest but richest plant kingdom for its size and the only kingdom contained within a single country. The other main groups of plants in fynbos are the Ericaceae and the Restionaceae. South African proteas are thus widely cultivated due to their many varied forms and unusual flowers. They are popular in South Africa for their beauty and their usefulness in wildlife gardens
for attracting birds and useful insects.

The species most valued as ornamentals are the trees that grow in southern latitudes as they give landscapes in

temperate climates a tropical appearance; Lomatia ferruginea (Fuinque), Lomatia hirsuta (Radal) have been introduced in Western Europe and to the western United States. Embothrium coccineum (Chilean Firetree or Notro) is highly valued in the British Isles for its dark red flowers and can be found as far north as the Faroe Islands
at a latitude of 62° north.

Among the banksias, many of which grow in temperate and Mediterranean climates, the vast majority are shrubs; only a few are trees that are valued for their height. Among the tallest species are: B. integrifolia with its subspecies B. integrifolia subsp. monticola, which is noteworthy as the plants that form the subspecies are the tallest trees of the banksias and they are the more frost-resistant than other banksias, B. seminuda, B. littoralis, B. serrata; among those that can be considered small trees or large shrubs: B. grandis, B. prionotes, B. marginata, B. coccinea and B. speciosa; all of these are planted in parks and gardens and even along roadsides because of their size. The rest of the species of this genus, around 170 species, are shrubs, although some of them are valued for their flowers.

Another species that is cultivated in some parts of the world, although it is smaller, is Telopea speciosissima (Waratah), from the mountains of New South Wales, Australia.

Some temperate climate species are cultivated more locally in Australia for their attractive appearance: Persoonia pinifolia (pine-leaved geebung) is valued for its vivid yellow flowers and grape-like fruit. Adenanthos sericeus (woolly bush) is planted for its attractive soft leaves and its small red or orange flowers. Hicksbeachia pinnatifolia (beef nut, red bauple nut) is commonly planted for its foliage and edible nuts.

Parasites

Hakea purpurea

The Proteaceae are particularly susceptible to certain parasites, in particular the oomycete Phytophthora cinnamomi, which causes severe root rot in the plants that grow in Mediterranean climates. Fusarium oxysporum causes a disease called fusariosis in roots that causes a yellowing and wilting, with serious ecological damages to woodland plants and economic losses in plants of commercial interest. Other common infections are caused by species of Botryosphaeria, Rhizoctonia, Armillaria, Botrytis, Calonectria and other fungi.

Conservation status

The

IUCN[11] considers that 47 Proteaceae species are threatened, of which one species, Stenocarpus dumbeensis Guillaumin, 1935, from New Caledonia, is thought to be extinct. The species of this family are particularly susceptible to the destruction or fragmentation of their habitat, fire, parasitic diseases, competition from introduced plants, soil degradation and other damage provoked by humans and their domesticated animals. The species are also affected by climate change
.

Fossils

Lambertia multiflora

The Proteaceae have a rich fossil record, despite the inherent difficulties in identifying remains that do not show diagnostic characteristics. Identification usually comes from using a combination of brachy-paracytic stomata and the unusual

Palaeocene of South America and the north east of Australia. The fossil record of some areas, such as New Zealand and Tasmania, show a greater biodiversity for Proteaceae than currently exists, which supports the fact that the distribution of many taxa has changed drastically with the passage of time and that the family has suffered a general decline, including high levels of extinction during the Cenozoic.[citation needed
]

Taxonomy

Isopogon anemonifolius

First described by French botanist Antoine Laurent de Jussieu, the family Proteaceae is a fairly large one, with around 80 genera, but less than 2,000 species. It is recognised by virtually all taxonomists. Firmly established under classical Linnaean taxonomy, it is also recognised by the cladistics-based APG and APG II systems. It is placed in the order Proteales, whose placement has itself varied.

A classification of the genera within Proteaceae was made by

Symphionematoideae, Proteoideae and Grevilleoideae.[14] In 2008 Mast and colleagues updated Macadamia and related genera in tribe Macadamieae. Furthermore, Orites megacarpus was found not to be within the genus Orites, nor in the tribe Roupaleae, instead in the tribe Macadamieae, hence given the new species name Nothorites megacarpus.[15]
The full arrangement, according to Weston and Barker (2006) with the updates to genera from Mast et al. (2008), is as follows:

Flowers, leaves and fruit of Banksia coccinea, from Ferdinand Bauer's 1813 flora Illustrationes Florae Novae Hollandiae
Family Proteaceae
Subfamily
Bellendenoideae
Bellendena
Subfamily Persoonioideae
Tribe
Placospermeae
Placospermum
Tribe
Persoonieae
Persoonia
Subfamily
Symphionematoideae
Agastachys — Symphionema
Subfamily Proteoideae
incertae sedis
Eidothea — Beauprea — Beaupreopsis — Dilobeia — Cenarrhenes — Franklandia
Tribe Conospermeae
Subtribe
Stirlingiinae
Stirlingia
Subtribe Conosperminae
Conospermum — Synaphea
Tribe Petrophileae
Petrophile — Aulax
Tribe Proteeae
Protea — Faurea
Tribe Leucadendreae
Subtribe
Isopogoninae
Isopogon
Subtribe
Adenanthinae
Adenanthos
Subtribe Leucadendrinae
Leucadendron — Serruria — Paranomus — Vexatorella — Sorocephalus — Spatalla — Leucospermum — Mimetes — Diastella — Orothamnus
Subfamily Grevilleoideae
incertae sedis
Sphalmium — Carnarvonia
Tribe
Roupaleae
incertae sedis
Megahertzia — Knightia — Eucarpha — Triunia
Subtribe
Roupalinae
Roupala — Neorites — Orites
Subtribe
Lambertiinae
Lambertia — Xylomelum
Subtribe
Heliciinae
Helicia — Hollandaea
Subtribe
Floydiinae
Darlingia — Floydia
Tribe
Banksieae
Subtribe
Musgraveinae
Musgravea — Austromuellera
Subtribe
Banksiinae
Banksia
Tribe
Embothrieae
Subtribe
Lomatiinae
Lomatia
Subtribe
Embothriinae
Telopea
Subtribe
Stenocarpinae
Stenocarpus — Strangea
Subtribe Hakeinae
Opisthiolepis — Buckinghamia — Hakea — Grevillea — Finschia
Tribe
Macadamieae
Subtribe
Macadamiinae
Macadamia — Lasjia — Nothorites — Panopsis — Brabejum
Subtribe Malagasiinae
Malagasia — Catalepidia
Subtribe Virotiinae
Virotia — Athertonia — Heliciopsis
Subtribe
Gevuininae
Cardwellia — Euplassa — Gevuina — Bleasdalea — Hicksbeachia — Kermadecia

References

  1. ^ "Proteales". www.mobot.org. Retrieved 16 June 2023.
  2. .
  3. .
  4. On the Proteaceae of Jussieu
    ". Transactions of the Linnean Society of London 10:15–226, 1811.
  5. ^ Jussieu, Antoine Laurent de, Genera plantarum secundum ordines naturales disposita, juxta methodum in Horto Regio Parisiensi exaratum, anno M.DCC.LXXIV. Paris, 1789. pp. 78–80 Archived 16 February 2016 at the Wayback Machine.
  6. S2CID 2835600
    .
  7. ^ Watson, L. & Dallwitz, M. J. (1992). "Proteaceae". The Families of Flowering Plants: Descriptions, Illustrations, Identification, Information retrieval. Retrieved 26 June 2006.
  8. ^ a b Orchard, Anthony E. (ed.). "Proteaceae". Flora of Australia, Volume 16: Elaeagnaceae, Proteaceae 1. Melbourne: Australian Biological Resources Study / CSIRO Publishing. Archived from the original on 31 October 2006. Retrieved 26 June 2006. {{cite book}}: |author= has generic name (help)
  9. .
  10. .
  11. ^ IUCN 2006. 2006 IUCN Red List of Threatened Species. <www.iucnredlist.org>. Downloaded on 22 February 2007
  12. ^ Rozefelds, Andrew C.; Dettmann, Mary E.; Clifford, H. Trevor. "Xylocaron lockii F.Muell. (Proteaceae) fruits from the Cenozoic of south eastern Australia". Kanunnah. 1: 91–102.
  13. .
  14. ^ . Retrieved 30 March 2010.
  15. .

External links