Pyruvate dehydrogenase lipoamide kinase isozyme 1

Source: Wikipedia, the free encyclopedia.
PDK1
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Ensembl
UniProt
RefSeq (mRNA)

NM_001278549
NM_002610

NM_172665
NM_001360002

RefSeq (protein)

NP_001265478
NP_002601

NP_766253
NP_001346931

Location (UCSC)Chr 2: 172.56 – 172.61 MbChr 2: 71.7 – 71.73 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Pyruvate dehydrogenase lipoamide kinase isozyme 1, mitochondrial is an enzyme that in humans is encoded by the PDK1 gene.[5][6] It codes for an isozyme of pyruvate dehydrogenase kinase (PDK).

mitochondrial multienzyme complex that catalyzes the oxidative decarboxylation of pyruvate and is one of the major enzymes responsible for the regulation of homeostasis of carbohydrate fuels in mammals. The enzymatic activity is regulated by a phosphorylation/dephosphorylation cycle. Phosphorylation of PDH by a specific pyruvate dehydrogenase kinase (PDK) results in inactivation.[6]

Structure

The mature protein encoded by the

catalytic domain of PDK1 might exist separately in cells and important for the regulation of the PDK1 substrate. The crystal structural studies suggest that the PIF-pocket is located at the catalytic domain as well.[7]

Function

The Pyruvate Dehydrogenase (PDH) complex must be tightly regulated due to its central role in general metabolism. Within the complex, there are three serine residues on the E1 component that are sites for phosphorylation; this phosphorylation inactivates the complex. In humans, there have been four

thiamine pyrophosphatase (TPP) coenzyme is bound, the rates of phosphorylation by all four isozymes are drastically affected; specifically, the incorporation of phosphate groups by PDK1 into sites 2 and 3 is significantly reduced.[8]

Regulation

As the primary regulators of a crucial step in the central metabolic pathway, the pyruvate dehydrogenase family is tightly regulated itself by a myriad of factors. PDK activity has been shown to decrease in individuals consuming a diet that is high in

N-terminal domain of PDK1. Bound DCA promotes local conformational changes that are communicated to both nucleotide-binding and lipoyl-binding pockets of PDK1, leading to the inactivation of kinase activity.[10]

Clinical Significance

PDK1 is relevant in a variety of clinical conditions throughout the body. As PDK1 regulates the PDH complex, it has been proven to be an important regulator in certain cells, including the beta cells within the islets of the pancreas. In order to optimize glucose-stimulated insulin secretion (GSIS), a primary function of the pancreas, a low PDK1 activity must be maintained to keep PDH in a dephosphorylated and active state.[11] Maintaining low PDK1 levels has also proven to be beneficial in certain regions of the brain, as it confers a high tolerance to amyloid beta, a metabolite that is directly correlated with the development of Alzheimer's disease.[12]

Cancer

The ubiquitous role of this gene lends itself to being involved in a variety of disease pathologies, including cancer. PDK1

Hypoxia-Inducing Factor (HIF) activation, which creates a feed-forward loop for malignancy progression. As such, using HIF-1 as a metabolite to regulate PDK1 is seen as another potential therapy, either on its own or in tandem with other therapies, for this type of cancer.[16][17] In a further developed study, combined PDK1 and CHK1 inhibition was shown to be required to kill glioblastoma stem-like cells in vitro and in vivo.[18]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000152256Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000006494Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. PMID 7499431
    .
  6. ^ a b c "Entrez Gene: PDK1 pyruvate dehydrogenase kinase, isozyme 1".
  7. PMID 24044887
    .
  8. .
  9. .
  10. .
  11. .
  12. .
  13. .
  14. .
  15. .
  16. .
  17. .
  18. .

Further reading