PIM1

Source: Wikipedia, the free encyclopedia.
PIM1
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Ensembl
UniProt
RefSeq (mRNA)

NM_002648
NM_001243186

NM_008842
NM_001364913

RefSeq (protein)

NP_001230115
NP_002639

NP_032868
NP_001351842

Location (UCSC)Chr 6: 37.17 – 37.18 MbChr 17: 29.71 – 29.72 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Proto-oncogene serine/threonine-protein kinase Pim-1 is an enzyme that in humans is encoded by the PIM1 gene.[5][6][7]

Pim-1 is a

transcriptional activation, as well as more general signal transduction pathways.[8] Pim-1's role in oncogenic signalling has led to it becoming a widely studied target in cancer research, with numerous drug candidates under investigation which target it.[10][11]

Gene

Located on chromosome 6 (6p21.2), the gene encompasses 5Kb of DNA, including 6 exons and 5 introns. Expression of Pim-1 has been shown to be regulated by the

promoter results in the transcription of Pim-1.[8] The Pim-1 gene has been found to be conserved in dogs, cows, mice, rats, zebrafish and C. elegans. Pim-1 deficient mice have been shown to be phenotypically normal, indicating that there is redundancy in the function of this kinase.[8] In fact, sequence homology searches have shown that two other Pim-1-like kinases, Pim-2 and Pim-3, are structurally and functionally similar.[8] The Pim-1 gene encodes has multiple translation initiation sites, resulting in two proteins of 34 and 44kD.[8]

Protein structure

Human, murine and rat Pim-1 contain 313 amino acids, and have a 94 – 97% amino acid identity.[8] The active site of the protein, ranging from amino acids 38-290, is composed of several conserved motifs, including a glycine loop motif, a phosphate binding site and a proton acceptor site.[8] Modification of the protein at amino acid 67 (lysine to methionine) results in the inactivation of the kinase.[8]

Activation and stabilization

Pim-1 is primarily involved in

IFNγ, among others.[8]
Pim-1 itself can bind to negative regulators of the JAK/STAT pathway, resulting in a negative feedback loop.

Although little is known about the post-transcriptional modifications of Pim-1, it has been hypothesized that Hsp90 is responsible for the folding and stabilization of Pim-1, although the exact mechanism has yet to be discovered.[8] Furthermore, the serine/threonine phosphatase PP2 has been shown to degrade Pim-1.

Interactions

PIM1 has been shown to

interact
with:

Other known substrates/binding partners of Pim-1 include proteins involved in transcription regulation (nuclear adaptor protein p100, HP-1, PAP-1 and TRAF2 / SNX6), and regulation of the JAK/STAT pathway (SOCS1 and SOCS3).[8] Furthermore, Pim-1 has been shown to be a cofactor for c-Myc, a transcription factor believed to regulate 15% of all genes, and their synergy has been in prostate tumorigenesis.[20]

Pim-1 is able to phosphorylate many targets, including itself. Many of its targets are involved in cell cycle regulation.

Activates

  • Cdc25C (G1/S positive regulator): Activation results in increased G1S[8]
  • Cdc25C (G2/M positive regulator): Activation results in increased G2M[8]

Deactivates

  • Bad (Pro-apoptotic protein): Deactivation results in increased cell survival[8]
  • CKI (G1/S negative regulator): Deactivation results in increased G1 → S[8]
  • C-TAK1 (Cdc25C inhibitor): Deactivation results in increased G2 → M[8]

Clinical implications

Pim-1 is directly involved in the regulation of cell cycle progression and apoptosis, and has been implicated in numerous cancers including prostate cancer, Burkitt's lymphoma and oral cancer, as well as numerous hematopoietic lymphomas. Single nucleotide polymorphisms in the Pim-1 gene have been associated with increased risk for lung cancer in Korean patients, and have also been found in diffuse large cell lymphomas.[21] As well as showing useful activity against a range of cancers,[11] PIM kinase inhibitors have also been suggested as possible treatments for Alzheimer's disease.[22] PIM expression is sufficient to drive resistance to anti-angiogenic agents in prostate and colon cancer models, although the mechanism is not fully elucidated.[23] It has been suggested that a co-targeted therapeutic approach to inhibition of Pim-1 in cancer may be preferable, with suggested co-targets including the PI3K pathway and more.[10] PIM1 expression was found to be elevated during aging and to contribute to the development of pulmonary fibrosis.[24]

Inhibitors

A large number of small molecule inhibitors of PIM1 have been developed. Clinical trial results so far have showed promising anti-cancer activity, but side effects due to insufficient selectivity have proved problematic and research continues to find more potent and selective inhibitors for this target.[25][26][27][28][29][30][31][10][11]

Examples

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000137193Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000024014Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ "Entrez Gene: PIM1 pim-1 oncogene".
  6. PMID 3329709
    .
  7. .
  8. ^ .
  9. ^ "Pim-1 Oncogene". Retrieved 2015-12-14.
  10. ^
    PMID 32025342
    .
  11. ^ .
  12. .
  13. .
  14. .
  15. .
  16. .
  17. .
  18. .
  19. .
  20. .
  21. .
  22. .
  23. .
  24. .
  25. .
  26. .
  27. .
  28. .
  29. .
  30. .
  31. .
  32. .
  33. .
  34. .
  35. .
  36. .

Further reading

This page is based on the copyrighted Wikipedia article: PIM1. Articles is available under the CC BY-SA 3.0 license; additional terms may apply.Privacy Policy