Cystathionine gamma-lyase

Source: Wikipedia, the free encyclopedia.
cystathionine γ-lyase
ExPASy
NiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDB PDBe PDBsum
Gene OntologyAmiGO / QuickGO
Search
PMCarticles
PubMedarticles
NCBIproteins
cystathionase (cystathionine γ-lyase)
Chr. 1 p31.1
Search for
StructuresSwiss-model
DomainsInterPro

The enzyme cystathionine γ-lyase (EC 4.4.1.1, CTH or CSE; also cystathionase; systematic name L-cystathionine cysteine-lyase (deaminating; 2-oxobutanoate-forming)) breaks down

α-ketobutyrate), and ammonia
:

L-cystathionine + H2O = L-cysteine + 2-oxobutanoate + NH3 (overall reaction)
(1a) L-cystathionine = L-cysteine + 2-aminobut-2-enoate
(1b) 2-aminobut-2-enoate = 2-iminobutanoate (spontaneous)
(1c) 2-iminobutanoate + H2O = 2-oxobutanoate + NH3 (spontaneous)

Pyridoxal phosphate is a prosthetic group of this enzyme.[1][2][3]

Cystathionine γ-lyase also catalyses the following elimination reactions:

In some bacteria and mammals, including humans, this enzyme takes part in generating hydrogen sulfide.[2][5] Hydrogen sulfide is one of a few gases that was recently discovered to have a role in cell signaling in the body.[6]

Enzyme mechanism

Cystathionase uses pyridoxal phosphate to facilitate the cleavage of the sulfur-gamma carbon bond of cystathionine, resulting in the release of cysteine.

ketimine is hydrolyzed, causing the formation of α-ketobutyrate.[7]

The amino group on cystathionine is

alpha-beta unsaturation and pushing a lone pair onto the aldimine nitrogen. To reform the aldimine, this lone pair pushes back down, cleaving the sulfur-gamma carbon bond, resulting in the release of cysteine.[3]

A pyridoxamine derivative of vinyl

hydrolyzed to release α-ketobutyrate. Deprotonation of the lysine residue causes ammonia to leave, thus completing the catalytic cycle.[7]

Cystathionine gamma lyase also shows gamma-synthase activity depending on the concentrations of reactants present.[8] The mechanisms are the same until they diverge after formation of the vinyl glyoxylate derivative. In the gamma synthase mechanism, the gamma carbon is attacked by a sulfur nucleophile, resulting in the formation of a new sulfur-gamma carbon bond.[7][8]

The mechanism for cystathionine gamma lyase.

Enzyme structure

Cystathionine γ-lyase is a member of the Cys/Met metabolism PLP-dependent enzymes family. Other members include cystathionine γ synthase, cystathionine β lyase, and methionine γ lyase.

aspartate aminotransferase family.[1][8] Like many other PLP-dependent enzymes, cystathionine γ-lyase is a tetramer with D2 symmetry.[8]

Pyridoxal phosphate is bound in the active site by Lys212.[2]

Disease relevance

Inhibited cystathionase active site.[2] The inhibitor and Tyr114 are in light blue, PLP in purple, and Lys121 in yellow.

Cysteine is the

AIDS.[9]

Mutations and deficiencies in cystathionase are associated with cystathioninuria. The mutations T67I and Q240E weaken the enzyme's affinity for pyridoxal phosphate, the co-factor vital to enzymatic function.[2] Low levels of H2S have also been associated with hypertension in mice.[10]

Propargylglycine (acidic β hydrogen explicitly shown).

Excessive levels of H2S, due to increased activity of cystathionase, are associated with

allene, which is then attacked by the phenol of Tyr114. The internal aldimine can regenerate, but the newly created vinyl ether sterically hinders the active site, blocking cysteine from attacking pyridoxal phosphate.[2]

Regulation

H2S decreases

transcription of cystathionase at concentrations between 10 and 80μM. However, transcription is increased by concentrations near 120μM, and inhibited completely at concentrations in excess of 160μM.[6]

See also

References

  1. ^ a b Berg, J. M., Tymoczko, J. L., & Stryer, L. (2012). Biochemistry (7th ed.). New York: W.H. Freeman Company.
  2. ^
    PMID 19019829
    .
  3. ^ .
  4. .
  5. .
  6. ^ .
  7. ^ .
  8. ^ .
  9. .
  10. .

External links