Polymer science

Source: Wikipedia, the free encyclopedia.

Polymer science or macromolecular science is a subfield of materials science concerned with polymers, primarily synthetic polymers such as plastics and elastomers. The field of polymer science includes researchers in multiple disciplines including chemistry, physics, and engineering.

Subdisciplines

This science comprises three main sub-disciplines:

History of polymer science

The first modern example of polymer science is

thermosetting phenolformaldehyde resin called Bakelite.[3]

Despite significant advances in polymer synthesis, the molecular nature of polymers was not understood until the work of

atoms held together by covalent bonds. It took over a decade for Staudinger's work to gain wide acceptance in the scientific community, work for which he was awarded the Nobel Prize
in 1953.

The World War II era marked the emergence of a strong commercial polymer industry. The limited or restricted supply of natural materials such as

Teflon
have continued to fuel a strong and growing polymer industry.

The growth in industrial applications was mirrored by the establishment of strong academic programs and research institutes. In 1946,

Brooklyn Polytechnic, the first research facility in the United States dedicated to polymer research. Mark is also recognized as a pioneer in establishing curriculum and pedagogy for the field of polymer science.[7] In 1950, the POLY division of the American Chemical Society was formed, and has since grown to the second-largest division in this association with nearly 8,000 members. Fred W. Billmeyer, Jr., a Professor of Analytical Chemistry had once said that "although the scarcity of education in polymer science is slowly diminishing but it is still evident in many areas. What is most unfortunate is that it appears to exist, not because of a lack of awareness but, rather, a lack of interest."[8]

Nobel prizes related to polymer science

2005 (Chemistry)

Richard Schrock, Yves Chauvin for olefin metathesis.[9]

2002 (Chemistry)

John Bennett Fenn, Koichi Tanaka, and Kurt Wüthrich for the development of methods for identification and structure analyses of biological macromolecules.[10]

2000 (Chemistry)

conductive polymers, contributing to the advent of molecular electronics.[11]

1991 (Physics) Pierre-Gilles de Gennes for developing a generalized theory of phase transitions with particular applications to describing ordering and phase transitions in polymers.[12]

1974 (Chemistry)

Paul J. Flory for contributions to theoretical polymer chemistry.[13]

1963 (Chemistry)

1953 (Chemistry) Hermann Staudinger for contributions to the understanding of macromolecular chemistry.[15]

References

  1. ^ McLeish (2009) p. 6811.
  2. ^ "Types of Polymer". Plastics Historical Society. Archived from the original on 2009-04-02.
  3. ^ "Bakelite: The World's First Synthetic Plastic". National Historic Chemical Landmarks. American Chemical Society. Archived from the original on July 22, 2012. Retrieved June 25, 2012.
  4. ^ "Hermann Staudinger: Foundation of Polymer Science". National Historic Chemical Landmarks. American Chemical Society. Archived from the original on January 12, 2013. Retrieved June 25, 2012.
  5. ^ "Foundation of Polymer Science: Wallace Carothers and the Development of Nylon". National Historic Chemical Landmarks. American Chemical Society. Archived from the original on February 23, 2013. Retrieved June 25, 2012.
  6. ^ "U.S. Synthetic Rubber Program". National Historic Chemical Landmarks. American Chemical Society. Archived from the original on February 23, 2013. Retrieved June 25, 2012.
  7. ^ "Herman Mark and the Polymer Research Institute". National Historic Chemical Landmarks. American Chemical Society. Archived from the original on January 12, 2013. Retrieved June 25, 2012.
  8. ^ Fred W. Billmeyer, Jr., (1984), Third Edition, Textbook of Polymer Science, A Wiley-Interscience Publication. preface to the second edition
  9. ^ "The Nobel Prize in Chemistry 2005". NobelPrize.org. Retrieved 2024-01-11.
  10. ^ "The Nobel Prize in Chemistry 2002". NobelPrize.org. Retrieved 2024-01-11.
  11. ^ "The Nobel Prize in Chemistry 2000". NobelPrize.org. Retrieved 2024-01-11.
  12. ^ "The Nobel Prize in Physics 1991". NobelPrize.org. Retrieved 2024-01-11.
  13. ^ "The Nobel Prize in Chemistry 1974". NobelPrize.org. Retrieved 2024-01-11.
  14. ^ "The Nobel Prize in Chemistry 1963". NobelPrize.org. Retrieved 2024-01-11.
  15. ^ "The Nobel Prize in Chemistry 1953". NobelPrize.org. Retrieved 2024-01-11.

External links