Benthos

Source: Wikipedia, the free encyclopedia.
Seaweed and two chitons in a tide pool

Benthos (from

tidal pools along the foreshore, out to the continental shelf, and then down to the abyssal depths
.

Many organisms adapted to deep-water pressure cannot survive in the upper parts of the

atmosphere for every 10 metres of water depth).[2]

Because light is

detritivores
.

The term benthos, coined by

freshwater biology to refer to organisms at the bottom of freshwater bodies of water, such as lakes, rivers, and streams.[5] There is also a redundant synonym, Benton.[6]

Overview

Compared to the relatively featureless

intertidal immersion. The seafloor varies widely in the types of sediment it offers. Burrowing animals can find protection and food in soft, loose sediments such as mud, clay and sand. Sessile species such as oysters and barnacles can attach themselves securely to hard, rocky substrates. As adults they can remain at the same site, shaping depressions and crevices where mobile animals find refuge. This greater diversity in benthic habitats has resulted in a higher diversity of benthic species. The number of benthic animal species exceeds one million. This far exceeds the number of pelagic animal species (about 5000 larger zooplankton species, 22,000 pelagic fish species and 110 marine mammal species).[7]

By size

Macrobenthos

Macrobenthos, prefix from

cumaceans.[8]

Meiobenthos

ostracodes
.

Microbenthos

Microbenthos, prefix from the Greek mikrós 'small', comprises microscopic benthic organisms that are less than about 0.1 mm in size. Some examples are

.

Benthic diatom

Marine microbenthos are microorganisms that live in the benthic zone of the ocean – that live near or on the seafloor, or within or on surface seafloor sediments. The word benthos comes from Greek, meaning "depth of the sea". Microbenthos are found everywhere on or about the seafloor of continental shelves, as well as in deeper waters, with greater diversity in or on seafloor sediments. In shallow waters, seagrass meadows, coral reefs and kelp forests provide particularly rich habitats. In photic zones benthic diatoms dominate as photosynthetic organisms. In intertidal zones changing tides strongly control opportunities for microbenthos.

  • Elphidium a widespread abundant genus of benthic forams
    Elphidium a widespread abundant genus of benthic forams
  • Heterohelix, an extinct genus of benthic forams
    Heterohelix, an extinct genus of benthic forams

Both foraminifera and diatoms have

oxygen isotopes in the shells, since lighter isotopes evaporate more readily in warmer water leaving the heavier isotopes in the shells. Information about past climates can be inferred further from the abundance of forams and diatoms, since they tend to be more abundant in warm water.[9]

The sudden extinction event which killed the dinosaurs 66 million years ago also rendered extinct three-quarters of all other animal and plant species. However, deep-sea benthic forams flourished in the aftermath. In 2020 it was reported that researchers have examined the chemical composition of thousands of samples of these benthic forams and used their findings to build the most detailed climate record of Earth ever.[10][11]

Some endoliths have extremely long lives. In 2013 researchers reported evidence of endoliths in the ocean floor, perhaps millions of years old, with a generation time of 10,000 years.[12] These are slowly metabolizing and not in a dormant state. Some Actinomycetota found in Siberia are estimated to be half a million years old.[13][14][15]

By type

Example zoobenthos
A variety of marine worms
Plate from Das Meer
by M. J. Schleiden (1804–1881)

Zoobenthos

Zoobenthos, prefix from

Ancient Greek
zôion 'animal', animals belonging to the benthos.

Phytobenthos

macroalgae (seaweed
).

By location

Endobenthos

Endobenthos (or endobenthic), prefix from

oxygenated top layer, e.g., a sea pen or a sand dollar
.

Epibenthos

Epibenthos (or epibenthic), prefix from

Ancient Greek epí 'on top of', lives on top of the sediments, e.g., like a sea cucumber
or a sea snail crawling about. Unlike other epiphytes.

Hyperbenthos

Hyperbenthos (or hyperbenthic), prefix from

Ancient Greek hupér 'over', lives just above the sediment, e.g., a rock cod
.

Food sources

Effect of eutrophication
on marine benthic life

The main food sources for the benthos are

sea stars, snails, cephalopods, and crustaceans
are important predators and scavengers.

Benthic organisms, such as

sea cucumbers, brittle stars and sea anemones, play an important role as a food source for fish, such as the California sheephead, and humans
.

Ecological role

Benthos as bioindicators

Benthic macro-invertebrates play a critical role in aquatic ecosystems. These organisms can be used to indicate the presence, concentration, and effect of water pollutants in the aquatic environment. Some water contaminants—such as nutrients, chemicals from surface runoff, and metals[16]—settle in the sediment of river beds, where many benthos reside. Benthos are highly sensitive to contamination, so their close proximity to high pollutant concentrations make these organisms ideal for studying water contamination.[17]

Benthos can be used as bioindicators of water pollution through ecological population assessments or through analyzing biomarkers. In ecological population assessments, a relative value of water pollution can be detected. Observing the number and diversity of macro-invertebrates in a waterbody can indicate the pollution level. In highly contaminated waters, a reduced number of organisms and only pollution-tolerant species will be found.[18] In biomarker assessments, quantitative data can be collected on the amount of and direct effect of specific pollutants in a waterbody. The biochemical response of macro-invertebrates' internal tissues can be studied extensively in the laboratory. The concentration of a chemical can cause many changes, including changing feeding behaviors,[19] inflammation, and genetic damage,[20] effects that can be detected outside of the stream environment. Biomarker analysis is important for mitigating the negative impacts of water pollution because it can detect water pollution before it has a noticeable ecological effect on benthos populations.[21]

Carbon processing

  • Carbon processing in marine sediments

Organic matter produced in the sunlit layer of the ocean and delivered to the sediments is either consumed by organisms or buried. The organic matter consumed by organisms is used to synthesize biomass or is metabolized to carbon dioxide and nutrients. In the long-term or at steady-state, i.e., the biomass of benthic organisms does not change, the benthic community can be considered a black box diverting organic matter into either metabolites or the geosphere (burial).[22]

See also

Benthos (organisms that live at the ocean floor) can be contrasted with neuston (organisms that live at the ocean surface) plankton (organisms that drift with water currents) and nekton (organisms that can swim against water currents)

Notes

  1. ^ a b Benthos from the Census of Antarctic Marine Life website
  2. ^ US Department of Commerce, National Oceanic and Atmospheric Administration. "How does pressure change with ocean depth?". oceanservice.NOAA.gov.
  3. ^ Haeckel, E. 1891. Plankton-Studien. Jenaische Zeitschrift für Naturwissenschaft 25 / (Neue Folge) 18: 232-336. BHL.
  4. Perseus Project
    .
  5. ^ "North American Benthological Society website". Archived from the original on 2008-07-05. Retrieved 2008-08-16.
  6. ^ Nehring, S. & Albrecht, U. (1997). Benthos und das redundant Benton: Neologismen in der deutschsprachigen Limnologie. Lauterbornia 31: 17-30, [1].
  7. .
  8. .
  9. SERC
    , Carleton College. Modified 23 July 2020. Retrieved 10 September 2020.
  10. ^ Earth barreling toward 'Hothouse' state not seen in 50 million years, epic new climate record shows LiveScience, 10 September 2020.
  11. S2CID 221593388
    .
  12. ^ Bob Yirka 29 Aug 2013
  13. ^ Sussman: Oldest Plants, The Guardian, 2 May 2010
  14. ^ "It's Okay to be Smart • the oldest living thing in the world: These". Archived from the original on 2018-07-13. Retrieved 2018-07-13.
  15. PMID 17728401
    .
  16. ^ "Major Contaminants | Contaminated Sediments | US EPA". archive.epa.gov. Retrieved 2022-10-12.
  17. S2CID 186207664
    .
  18. ^ US EPA, OW (2013-11-21). "Indicators: Benthic Macroinvertebrates". www.epa.gov. Retrieved 2022-10-14.
  19. ISSN 0043-1354
    .
  20. .
  21. .
  22. ISSN 1726-4189. Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License
    .

References

External links