Seagrass

Source: Wikipedia, the free encyclopedia.

Seagrasses
Temporal range: 70–0 
Ma
Zostera marina – the most abundant seagrass species in the Northern Hemisphere
Scientific classification Edit this classification
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Monocots
Order:
R.Br. ex Bercht. & J.Presl
Families

See Taxonomy

Seagrasses are the only

Posidoniaceae, Zosteraceae, Hydrocharitaceae and Cymodoceaceae), all in the order Alismatales (in the clade of monocotyledons).[1] Seagrasses evolved from terrestrial plants
which recolonised the ocean 70 to 100 million years ago.

The name seagrass stems from the many species with long and narrow

grasses of the family Poaceae
.

Like all

syllid polychaete worm larvae have both been found with pollen grains, the plant producing nutritious mucigenous clumps of pollen to attract and stick to them instead of nectar as terrestrial flowers do.[2]

Seagrasses form dense underwater seagrass meadows which are among the most productive ecosystems in the world. They function as important carbon sinks[3] and provide habitats and food for a diversity of marine life comparable to that of coral reefs.

Overview

Seagrasses are a paraphyletic group of marine

anchoring. The roots can live in an anoxic environment and depend on oxygen transport from the leaves and rhizomes but are also important in the nutrient transfer processes.[5][4]

Seagrasses profoundly influence the physical, chemical, and biological environments of coastal waters.

commercial fisheries, many aspects of their physiology are not well investigated. Several studies have indicated that seagrass habitat is declining worldwide.[6][7] Ten seagrass species are at elevated risk of extinction (14% of all seagrass species) with three species qualifying as endangered. Seagrass loss and degradation of seagrass biodiversity will have serious repercussions for marine biodiversity and the human population that depends upon the resources and ecosystem services that seagrasses provide.[8][4]

Seagrasses form important

marine species, prompts the need for protection and understanding of these valuable resources.[10]

Evolution

Evolution of seagrass, showing the progression onto land from marine origins, the diversification of land plants and the subsequent return to the sea by the seagrasses

Around 140 million years ago, seagrasses evolved from early monocots which succeeded in conquering the marine environment.

Monocots are grass and grass-like flowering plants (angiosperms), the seeds of which typically contain only one embryonic leaf or cotyledon.[11]

monocotyledonous flowering plants.[15]

Other plants that colonised the sea, such as

marine algae, have more diverse evolutionary lineages. In spite of their low species diversity, seagrasses have succeeded in colonising the continental shelves of all continents except Antarctica.[16]

Recent

stomatal genes) or have been reduced (e.g., genes involved in the synthesis of terpenoids) and others have been regained, such as in genes involved in sulfation.[18][10]

biotic (different seagrass grazers and bacterial colonization) stressors.[10] The cell walls of seagrasses seem intricate combinations of features known from both angiosperm land plants and marine macroalgae with new structural elements.[10]

Taxonomy

Today, seagrasses are a polyphyletic group of marine angiosperms with around 60 species in five families (

Ruppiaceae), which belong to the order Alismatales according to the Angiosperm Phylogeny Group IV System.[19] The genus Ruppia, which occurs in brackish water, is not regarded as a "real" seagrass by all authors and has been shifted to the Cymodoceaceae by some authors.[20] The APG IV system and The Plant List Webpage[21] do not share this family assignment.[10]

Family Image Genera Description
Zosteraceae The family
coastal
waters, with the highest diversity located around Korea and Japan.
Species subtotal:  
Phyllospadix
Zostera
Hydrocharitaceae The family Hydrocharitaceae, also known as tape-grasses, include Canadian waterweed and frogbit. The family includes both fresh and marine aquatics, although of the sixteen genera currently recognised, only three are marine.[22] They are found throughout the world in a wide variety of habitats, but are primarily tropical.
Species subtotal:  
Enhalus
Halophila
Thalassia
2 species
 
Posidoniaceae
The family
Mediterranean and around the south coast of Australia
.
Species subtotal: 2 to 9  
Posidonia
Cymodoceaceae The family Cymodoceaceae, also known as manatee-grass, includes only marine species.[23] Some taxonomists do not recognize this family.
Species subtotal:  
Amphibolis
Cymodocea
Halodule
Syringodium
Thalassodendron
Total species:   

Sexual recruitment

Seeds from Posidonia oceanica.[24] (A) Newly released seeds inside a fruit, (B) one-week-old seeds. FP: fruit pericarp, NRS: newly released seeds, WS: 1-week-old seeds, H: adhesive hairs, S: seed, R1: primary root, Rh: rhizome, L: leaves.
The sexual recruitment stages of Posidonia oceanica:[24]
dispersion, adhesion and settlement

Seagrass populations are currently threatened by a variety of anthropogenic stressors.[25][7] The ability of seagrasses to cope with environmental perturbations depends, to some extent, on genetic variability, which is obtained through sexual recruitment.[26][27][28] By forming new individuals, seagrasses increase their genetic diversity and thus their ability to colonise new areas and to adapt to environmental changes.[29][30][31][32][33][24][excessive citations]

Seagrasses have contrasting

Heterozostera sp.).[34][35] In contrast, other seagrasses form dispersal propagules. This strategy is typical of long-lived seagrasses that can form buoyant fruits with inner large non-dormant seeds, such as the genera Posidonia sp., Enhalus sp. and Thalassia sp.[34][36] Accordingly, the seeds of long-lived seagrasses have a large dispersal capacity compared to the seeds of the short-lived type,[37] which permits the evolution of species beyond unfavourable light conditions by the seedling development of parent meadows.[24]

The seagrass

photosynthetic activity, which increases their photosynthetic rates and thus maximises seedling establishment success.[45][46] Seedlings also show high morphological plasticity during their root system development[47][48] by forming adhesive root hairs to help anchor themselves to rocky sediments.[40][49][50] However, many factors about P. oceanica sexual recruitment remain unknown, such as when photosynthesis in seeds is active or how seeds can remain anchored to and persist on substrate until their root systems have completely developed.[24]

Intertidal and subtidal

Morphological and photoacclimatory responses of intertidal and subtidal Zostera marina eelgrass[51]

Seagrasses occurring in the intertidal and subtidal zones are exposed to highly variable environmental conditions due to tidal changes.[52][53] Subtidal seagrasses are more frequently exposed to lower light conditions, driven by plethora of natural and human-caused influences that reduce light penetration by increasing the density of suspended opaque materials. Subtidal light conditions can be estimated, with high accuracy, using artificial intelligence, enabling more rapid mitigation than was available using in situ techniques.[54] Seagrasses in the intertidal zone are regularly exposed to air and consequently experience extreme high and low temperatures, high photoinhibitory irradiance, and desiccation stress relative to subtidal seagrass.[53][55][56] Such extreme temperatures can lead to significant seagrass dieback when seagrasses are exposed to air during low tide.[57][58][59] Desiccation stress during low tide has been considered the primary factor limiting seagrass distribution at the upper intertidal zone.[60] Seagrasses residing the intertidal zone are usually smaller than those in the subtidal zone to minimize the effects of emergence stress.[61][58] Intertidal seagrasses also show light-dependent responses, such as decreased photosynthetic efficiency and increased photoprotection during periods of high irradiance and air exposure.[62][63]

Zostera marina seedling[64]

In contrast, seagrasses in the

light absorption efficiency by using the abundant wavelengths efficiently.[67][68][69] As seagrasses in the intertidal and subtidal zones are under highly different light conditions, they exhibit distinctly different photoacclimatory responses to maximize photosynthetic activity and photoprotection from excess irradiance.[citation needed
]

Seagrasses assimilate large amounts of

carbon isotope ratios of plant tissues change based on the inorganic carbon sources for photosynthesis,[76][77]
seagrasses in the intertidal and subtidal zones may have different stable carbon isotope ratio ranges.

Seagrass meadows

Seagrass bed
with several echinoids
Eustrombus gigas
)

tropical beds usually are more diverse, with up to thirteen species recorded in the Philippines.[citation needed
]

Seagrass beds are diverse and productive

geese, swans, sea urchins and crabs. Some fish species that visit/feed on seagrasses raise their young in adjacent mangroves or coral reefs
.

Seagrasses trap sediment and slow down water movement, causing suspended sediment to settle out. Trapping sediment benefits coral by reducing sediment loads, improving photosynthesis for both coral and seagrass.[78]

Although often overlooked, seagrasses provide a number of

sediment-dwelling organisms.[81] Seagrasses also enhance water quality by stabilizing heavy metals, pollutants, and excess nutrients.[83][14][13] The long blades of seagrasses slow the movement of water which reduces wave energy and offers further protection against coastal erosion and storm surge. Furthermore, because seagrasses are underwater plants, they produce significant amounts of oxygen which oxygenate the water column. These meadows account for more than 10% of the ocean's total carbon storage. Per hectare, it holds twice as much carbon dioxide as rain forests and can sequester about 27.4 million tons of CO2 annually.[84]

spotted sea trout provide essential foraging habitat during reproduction.[89] Sexual reproduction is extremely energetically expensive to be completed with stored energy; therefore, they require seagrass meadows in close proximity to complete reproduction.[89] Furthermore, many commercially important invertebrates also reside in seagrass habitats including bay scallops (Argopecten irradians), horseshoe crabs, and shrimp. Charismatic fauna can also be seen visiting the seagrass habitats. These species include West Indian manatee, green sea turtles
, and various species of sharks. The high diversity of marine organisms that can be found on seagrass habitats promotes them as a tourist attraction and a significant source of income for many coastal economies along the Gulf of Mexico and in the Caribbean.

  • Thalassia testudinum seagrass bed
    seagrass bed
  • White-spotted puffers, often found in seagrass areas
    White-spotted puffers, often found in seagrass areas
  • Underwater footage of seagrass meadow,
    conger eel

Seagrass microbiome

sulfidic.[90][91]

Seagrass holobiont

The concept of the holobiont, which emphasizes the importance and interactions of a microbial host with associated microorganisms and viruses and describes their functioning as a single biological unit,[92] has been investigated and discussed for many model systems, although there is substantial criticism of a concept that defines diverse host-microbe symbioses as a single biological unit.[93] The holobiont and hologenome concepts have evolved since the original definition,[94] and there is no doubt that symbiotic microorganisms are pivotal for the biology and ecology of the host by providing vitamins, energy and inorganic or organic nutrients, participating in defense mechanisms, or by driving the evolution of the host.[95]

Although most work on host-microbe interactions has been focused on animal systems such as corals, sponges, or humans, there is a substantial body of literature on plant holobionts.[96] Plant-associated microbial communities impact both key components of the fitness of plants, growth and survival,[97] and are shaped by nutrient availability and plant defense mechanisms.[98] Several habitats have been described to harbor plant-associated microbes, including the rhizoplane (surface of root tissue), the rhizosphere (periphery of the roots), the endosphere (inside plant tissue), and the phyllosphere (total above-ground surface area).[90] The microbial community in the P. oceanica rhizosphere shows similar complexity as terrestrial habitats that contain thousands of taxa per gram of soil. In contrast, the chemistry in the rhizosphere of P. oceanica was dominated by the presence of sugars like sucrose and phenolics.[99]

Cell walls

Sulfated polysaccharide structures from left to right: red algae: Botryocladia occidentalis, seagrass: Ruppia maritima, sea urchin: Echinometra lucunter, tunicate: Styela plicata
.

Seagrass

pectic polysaccharides called apiogalacturonans.[103][104][10]

In addition to polysaccharides, glycoproteins of the hydroxyproline-rich glycoprotein family,[105] are important components of cell walls of land plants. The highly glycosylated arabinogalactan proteins are of interest because of their involvement in both wall architecture and cellular regulatory processes.[106][107] Arabinogalactan proteins are ubiquitous in seed land plants[107] and have also been found in ferns, lycophytes and mosses.[108] They are structurally characterised by large polysaccharide moieties composed of arabinogalactans (normally over 90% of the molecule) which are covalently linked via hydroxyproline to relatively small protein/peptide backbones (normally less than 10% of the molecule).[107] Distinct glycan modifications have been identified in different species and tissues and it has been suggested these influence physical properties and function. In 2020, AGPs were isolated and structurally characterised for the first time from a seagrass.[109] Although the common backbone structure of land plant arabinogalactan proteins is conserved, the glycan structures exhibit unique features suggesting a role of seagrass arabinogalactan proteins in osmoregulation.[110][10]

Further components of secondary walls of plants are cross-linked phenolic polymers called lignin, which are responsible for mechanical strengthening of the wall. In seagrasses, this polymer has also been detected, but often in lower amounts compared to angiosperm land plants.[111][112][113][114][10] Thus, the cell walls of seagrasses seem to contain combinations of features known from both angiosperm land plants and marine macroalgae together with new structural elements. Dried seagrass leaves might be useful for papermaking or as insulating materials, so knowledge of cell wall composition has some technological relevance.[10]

Threats and conservation

Despite only covering 0.1 - 0.2% of the ocean’s surface, seagrasses form critically important ecosystems. Much like many other regions of the ocean, seagrasses have been faced with an accelerating global decline.[115] Since the late 19th century, over 20% of the global seagrass area has been lost, with seagrass bed loss occurring at a rate of 1.5% each year.[116] Of the 72 global seagrass species, approximately one quarter (15 species) could be considered at a Threatened or Near Threatened status on the IUCN’s Red List of Threatened Species.[117] Threats include a combination of natural factors, such as storms and disease, and anthropogenic in origin, including habitat destruction, pollution, and climate change.[115]

By far the most common threat to seagrass is human activity.

angiosperm plant species, they are highly affected by environmental conditions that change water clarity and block light.[120]

Seagrasses are also negatively affected by changing global climatic conditions. Increased weather events, sea level rise, and higher temperatures as a result of global warming all have the potential to induce widespread seagrass loss. An additional threat to seagrass beds is the introduction of non-native species. For seagrass beds worldwide, at least 28 non-native species have become established. Of these invasive species, the majority (64%) have been documented to infer negative effects on the ecosystem.[120]

Another major cause of seagrass disappearance is

positive feedback cycle, where the decomposition of organic matter further decreases the amount of oxygen present in the water column.[121]

Possible seagrass population trajectories have been studied in the Mediterranean sea. These studies suggest that the presence of seagrass depends on physical factors such as temperature, salinity, depth and turbidity, along with natural phenomena like climate change and anthropogenic pressure. While there are exceptions, regression was a general trend in many areas of the Mediterranean Sea. There is an estimated 27.7% reduction along the southern coast of Latium, 18%-38% reduction in the Northern Mediterranean basin, 19%-30% reduction on Ligurian coasts since the 1960s and 23% reduction in France in the past 50 years. In Spain the main reason for regression was due to human activity such as illegal trawling and aquaculture farming. It was found that areas with medium to high human impact suffered more severe reduction. Overall, it was suggested that 29% of known areal seagrass populations have disappeared since 1879. The reduction in these areas suggests that should warming in the Mediterranean basin continue, it may lead to a functional extinction of Posidonia oceanica in the Mediterranean by 2050. Scientists suggested that the trends they identified appear to be part of a large-scale trend worldwide.[122]

Conservation efforts are imperative to the survival of seagrass species. While there are many challenges to overcome with respect to seagrass conservation there are some major ones that can be addressed. Societal awareness of what seagrasses are and their importance to human well-being is incredibly important. As the majority of people become more urbanized they are increasingly more disconnected from the natural world. This allows for misconceptions and a lack of understanding of seagrass ecology and its importance. Additionally, it is a challenge to obtain and maintain information on the status and condition of seagrass populations. With many populations across the globe, it is difficult to map the current populations. Another challenge faced in seagrass conservation is the ability to identify threatening activities on a local scale. Also, in an ever growing human population, there is a need to balance the needs of the people while also balancing the needs of the planet. Lastly, it is challenging to generate scientific research to support conservation of seagrass. Limited efforts and resources are dedicated to the study of seagrasses.[123] This is seen in areas such as India and China where there is little to no plan in place to conserve seagrass populations. However, the conservation and restoration of seagrass may contribute to 16 of the 17 UN Sustainable Development Goals.[124]

In a study of seagrass conservation in China, several suggestions were made by scientists on how to better conserve seagrass. They suggested that seagrass beds should be included in the Chinese conservation agenda as done in other countries. They called for the Chinese government to forbid land reclamation in areas near or in seagrass beds, to reduce the number and size of culture ponds, to control raft aquaculture and improve sediment quality, to establish seagrass reserves, to increase awareness of seagrass beds to fishermen and policy makers and to carry out seagrass restoration.[125] Similar suggestions were made in India where scientists suggested that public engagement was important. Also, scientists, the public, and government officials should work in tandem to integrate traditional ecological knowledge and socio-cultural practices to evolve conservation policies.[126]

World Seagrass Day is an annual event held on March 1 to raise awareness about seagrass and its important functions in the marine ecosystem.[127][128]

See also

References

  1. ^ Tomlinson and Vargo (1966). "On the morphology and anatomy of turtle grass, Thalassia testudinum (Hydrocharitaceae). I. Vegetative Morphology". Bulletin of Marine Science. 16: 748–761.
  2. PMID 27680661
    .
  3. ^ "39 Ways to Save the Planet - Sublime Seagrass". BBC Radio 4. BBC. Retrieved 12 February 2022.
  4. ^
    doi:10.5402/2012/103892. Material was copied from this source, which is available under a Creative Commons Attribution 3.0 International License
    .
  5. ^ Larkum A. W. D., R. J. Orth, and C. M. Duarte (2006) Seagrass: Biology, Ecology and Conservation, Springer, The Netherlands.
  6. S2CID 4936412
    .
  7. ^ .
  8. .
  9. ^ Hemminga, M. A., and Duarte, C. M. eds (2000). “Seagrasses in the human environment,” in Seagrass Ecology (Cambridge: Cambridge University Press), 248–291.
  10. ^
    PMID 33193541. Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License
    .
  11. ISBN 978-0-415-25790-9., in Cronk, Bateman & Hawkins (2002)
    )
  12. .
  13. ^ .
  14. ^ a b c Papenbrock, J (2012). "Highlights in seagrass' phylogeny, physiology, and metabolism: what makes them so species?". International Scholarly Research Network: 1–15.
  15. ^ Les, D.H., Cleland, M.A. and Waycott, M. (1997) "Phylogenetic studies in Alismatidae, II: evolution of marine angiosperms (seagrasses) and hydrophily". Systematic Botany 22(3): 443–463.
  16. S2CID 4936412
    .
  17. ^ .
  18. ^ .
  19. .
  20. .
  21. ^ The Plant List (2020). Ruppia. Available online at: http://www.theplantlist.org/1.1/browse/A/Ruppiaceae/Ruppia/ (accessed September 22, 2020).
  22. ISSN 1179-3163
    .
  23. .
  24. ^
    PMID 30444902. Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License
    .
  25. .
  26. .
  27. .
  28. .
  29. .
  30. .
  31. .
  32. .
  33. .
  34. ^ .
  35. .
  36. ^ Kuo J, Den Hartog C. (2006) "Seagrass morphology, anatomy, and ultrastructure". In: Larkum AWD, Orth RJ, Duarte CM (Eds), Seagrasses: Biology, Ecology and Conservation, Springer, pages 51–87.
  37. .
  38. ^ .
  39. .
  40. ^ .
  41. .
  42. .
  43. .
  44. .
  45. .
  46. .
  47. .
  48. .
  49. .
  50. .
  51. PMID 27227327. Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License
    .
  52. .
  53. ^ .
  54. .
  55. .
  56. ^ .
  57. ^ Hemminga M. A. and Durate C. M. (2000) Seagrass ecology. Cambridge University Press.
  58. ^ .
  59. ^ Hirst A, Ball D, Heislers S, Young P, Blake S, Coots A. Baywide Seagrass Monitoring Program, Milestone Report No. 2 (2008). Fisheries Victoria Technical Report No. 29, January 2009.
  60. S2CID 85287808
    .
  61. .
  62. .
  63. .
  64. PMID 27896031. Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License
    .
  65. .
  66. .
  67. .
  68. .
  69. .
  70. .
  71. .
  72. .
  73. ^ Larkum AWD, James PL. Towards a model for inorganic carbon uptake in seagrasses involving carbonic anhydrase. In Kuo J, Phillips RC, Walker DI, Kirkman H, editors. Seagrass biology: Proceedings of an International Workshop. Nedlands: The University of Western Australia; 1996. pp. 191–196.
  74. .
  75. .
  76. .
  77. .
  78. ^ Seagrass-Watch: What is seagrass? Retrieved 2012-11-16.
  79. PMID 27732600
    .
  80. ^ United Nations Environment Programme (2020). Out of the blue: The value of seagrasses to the environment and to people. UNEP, Nairobi. https://www.unenvironment.org/resources/report/out-blue-value-seagrasses-environment-and-people
  81. ^
    JSTOR 3545850
    .
  82. .
  83. .
  84. .
  85. ^ "Seagrass FAQ". Florida Fish And Wildlife Conservation Commission.
  86. .
  87. .
  88. .
  89. ^ a b Boucek, R. E.; Leone, E.; Bickford, J.; Walters-Burnsed, S.; Lowerre-Barbieri, S. (2017). "More than just a spawning location: Examining fine-scale s[ace use of two estuarine fish species at a spawning aggregation site". Frontiers in Marine Science (4): 1–9.
  90. ^
    doi:10.3390/microorganisms5040081. Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License
    .
  91. .
  92. .
  93. .
  94. .
  95. .
  96. .
  97. .
  98. .
  99. .
  100. .
  101. ^ .
  102. .
  103. .
  104. .
  105. .
  106. .
  107. ^ .
  108. .
  109. .
  110. .
  111. .
  112. .
  113. .
  114. .
  115. ^ .
  116. .
  117. ^ .
  118. .
  119. .
  120. ^ .
  121. ^ .
  122. .
  123. .
  124. .
  125. .
  126. .
  127. ^ Mohsin, Haroon (24 June 2022). "World Seagrass Day". National Today.
  128. ^ "World Seagrass Day". World Seagrass Association. 10 June 2018. Retrieved 14 July 2022.

Further references

  • den Hartog, C. 1970. The Sea-grasses of the World. Verhandl. der Koninklijke Nederlandse Akademie van Wetenschappen, Afd. Natuurkunde, No. 59(1).
  • Duarte, Carlos M. and Carina L. Chiscano “Seagrass biomass and production: a reassessment” Aquatic Botany Volume 65, Issues 1–4, November 1999, Pages 159–174.
  • Green, E.P. & Short, F.T.(eds). 2003. World Atlas of Seagrasses. University of California Press, Berkeley, CA. 298 pp.
  • Hemminga, M.A. & Duarte, C. 2000. Seagrass Ecology. Cambridge University Press, Cambridge. 298 pp.
  • Hogarth, Peter The Biology of Mangroves and Seagrasses (Oxford University Press, 2007)
  • Larkum, Anthony W.D., Robert J. Orth, and Carlos M. Duarte (Editors) Seagrasses: Biology, Ecology and Conservation (Springer, 2006)
  • Orth, Robert J. et al. "A Global Crisis for Seagrass Ecosystems" BioScience December 2006 / Vol. 56 No. 12, Pages 987–996.
  • Short, F.T. & Coles, R.G.(eds). 2001. Global Seagrass Research Methods. Elsevier Science, Amsterdam. 473 pp.
  • A.W.D. Larkum, R.J. Orth, and C.M. Duarte (eds). Seagrass Biology: A Treatise. CRC Press, Boca Raton, FL, in press.
  • A. Schwartz; M. Morrison; I. Hawes; J. Halliday. 2006. Physical and biological characteristics of a rare marine habitat: sub-tidal seagrass beds of offshore islands. Science for Conservation 269. 39 pp. [1]
  • Waycott, M, McMahon, K, & Lavery, P 2014, A guide to southern temperate seagrasses, CSIRO Publishing, Melbourne

External links