Oncostatin M receptor

Source: Wikipedia, the free encyclopedia.
OSMR
Identifiers
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Ensembl
UniProt
RefSeq (mRNA)

NM_011019
NM_001310469

RefSeq (protein)

NP_001297398
NP_035149

Location (UCSC)Chr 5: 38.85 – 38.95 MbChr 15: 6.84 – 6.9 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Oncostatin-M specific receptor subunit beta also known as the Oncostatin M receptor (OSMR) , is one of the receptor proteins for oncostatin M, that in humans is encoded by the OSMR gene.[5][6]

OSMR is a member of the type I cytokine receptor family. This protein heterodimerizes with interleukin 6 signal transducer to form the type II oncostatin M receptor and with interleukin 31 receptor A to form the interleukin 31 receptor, and thus transduces oncostatin M and interleukin 31 induced signaling events.[5]

Expression

OSMR is widely expressed across non-haematopoietic, hepatocytes, mesothelial cells, glial cells and epithelial cell types across various organs and mammary glands.[7] OSM receptor is abundantly expressed on endothelial and stromal/fibroblast cells in the lung of mice.[8]=

In vitro expression of OSMR  in fetal hepatocytes is upregulated by OSM stimulation.[9]

OSMR expression has been shown to be induced by parathyroid hormone in osteoblasts and OSM.[10][11]

Signaling

Intracellular cell signalling occurs as a consequence of extracellular binding of the ligand OSM to OSMR complexes, formed from dimerization with receptor subunits such as gp130. Activation of the OSMR-gp130 complex by OSM triggers Janus Kinase 1 (JAK1) and Jak2 cross phosphorylation of tyrosine residues on the intracellular receptor domain. Downstream signaling activation of the OSMR-gp130 complex  along the JAK1 pathway leads to IL-6 signalling which is linked with activation of the MAPK cascade, PI3K cascade and STAT3 activation.[12][13]

OSM induced recruitment of

JNK activation.[14]

Clinical significance

The oncostatin M receptor is associated with primary cutaneous amyloidosis.[15]

OSM signaling via the OSMR is believed to play an important role in bone turnover as Mice lacking the OSMR receptor have osteopetrotic phenotypes.[16] Lack of OSMRβ activity has also been linked to adipose tissue inflammation and insulin resistance preceding obesity.[17]

OSM in-vivo regulation of hematopoiesis, through stimulation of stromal cells & hematopoietic progenitors - megakaryocytic and erythrocytic progenitors, is carried out by the OSMRβ receptor.[18]

Heart Disease

Inhibition of the OSMRβ extracellular subunit has been shown has been shown to prevent OSM-mediated down-regulation of myoglobin in cardiomyocytes and related apoptosis of cardiomyocytes in inflammatory heart failure.[19]

OSMRβ is not only overexpressed in patients with chronic dilated cardiomyopathy but has been shown to control dedifferentiation and loss of sarcomeric structures in myocardial infarction and dilated cardio myopathy.[20] OSM and OSMRβ mediated dedifferentiation  has been shown to increase chances of survival after acute myocardial damage but poor survival rates and compromised pump functions in chronic disease states.[20]

Cancer

OSMR activates STAT3 and transforming growth factor β (TGF-β) effector SMAD3 to regulate expression of genes responsible for inducing a mesenchymal/CSC phenotype.[21]

OSM-induced biological effects on breast tumor– derived cell lines were specifically mediated through the gp130/OSMRB complex.[22]

the OSM receptor (OSMR) is overexpressed in cervical squamous cell carcinomas and, independent of tumor stage, is associated with adverse clinical outcomes and higher relative risk of death.[23]

OSM and OSMRβ are co-expressed and lead to STAT 3 activation malignant human ovarian epithelial cells.[24]

The OSMR β  promoter gene is highly methylated in primary Colorectal Cancer tissues and  fecal DNA, it is a highly specific diagnostic biomarker of Colorectal Cancer.[25]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000145623Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000022146Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ a b "Entrez Gene: oncostatin M receptor".
  6. PMID 8999038
    .
  7. .
  8. .
  9. .
  10. .
  11. .
  12. .
  13. .
  14. .
  15. .
  16. .
  17. .
  18. .
  19. .
  20. ^ .
  21. .
  22. .
  23. .
  24. .
  25. .

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.