COVID-19 vaccine clinical research: Difference between revisions

Source: Wikipedia, the free encyclopedia.
Content deleted Content added
Extended confirmed users, Pending changes reviewers
43,868 edits
→‎Heterologous prime-boost vaccination: add FDA CDC booster update
WT:MED for concerns; should probably be critically evaluated by another source
Line 173: Line 173:


Researchers note that although current vaccines were not designed against the Delta variant, they nonetheless are highly effective, but to a lesser degree: protection fell from 91% to 66%.<ref name=Forbes>[https://www.forbes.com/sites/brucelee/2021/08/24/cdc-covid-19-vaccine-effectiveness-fell-from-91-to-66-with-delta-variant/?sh=27bfdae428f7 "CDC: Covid-19 Vaccine Effectiveness Fell From 91% To 66% With Delta Variant"], ''Forbes'', 24 August 2021</ref>{{Unreliable source?|date=October 2021}}{{Medical citation needed|date=October 2021}} One expert stated that "those who are infected following vaccination are still not getting sick and not dying like was happening before vaccination."<ref name=TNR/> "This virus is the most efficient virus for finding new hosts that are vulnerable," stated Dr. [[Eric Topol]], director and founder of the [[Scripps Research]] Translational Institute.<ref name=TNR/> By late August 2021 the Delta variant accounted for 99 percent of U.S. cases and was found to double the risk of severe illness and hospitalization for those not yet vaccinated.<ref name=LATimes-delta>[https://www.latimes.com/science/story/2021-08-28/hospitalization-risk-doubled-for-unvaccinated-covid-patients-infected-with-delta-variant "Among the unvaccinated, Delta variant more than doubles risk of hospitalization"], ''Los Angeles Times'', 28 August 2021</ref>
Researchers note that although current vaccines were not designed against the Delta variant, they nonetheless are highly effective, but to a lesser degree: protection fell from 91% to 66%.<ref name=Forbes>[https://www.forbes.com/sites/brucelee/2021/08/24/cdc-covid-19-vaccine-effectiveness-fell-from-91-to-66-with-delta-variant/?sh=27bfdae428f7 "CDC: Covid-19 Vaccine Effectiveness Fell From 91% To 66% With Delta Variant"], ''Forbes'', 24 August 2021</ref>{{Unreliable source?|date=October 2021}}{{Medical citation needed|date=October 2021}} One expert stated that "those who are infected following vaccination are still not getting sick and not dying like was happening before vaccination."<ref name=TNR/> "This virus is the most efficient virus for finding new hosts that are vulnerable," stated Dr. [[Eric Topol]], director and founder of the [[Scripps Research]] Translational Institute.<ref name=TNR/> By late August 2021 the Delta variant accounted for 99 percent of U.S. cases and was found to double the risk of severe illness and hospitalization for those not yet vaccinated.<ref name=LATimes-delta>[https://www.latimes.com/science/story/2021-08-28/hospitalization-risk-doubled-for-unvaccinated-covid-patients-infected-with-delta-variant "Among the unvaccinated, Delta variant more than doubles risk of hospitalization"], ''Los Angeles Times'', 28 August 2021</ref>

In September 2021, the European Journal of Epidemiology published a study demonstrating that increases in COVID-19 are unrelated to levels of vaccination across 68 countries and 2947 counties in the United States. The study also indicated that the trend line suggests a marginally positive association such that countries with a higher percentage of their population fully vaccinated have higher COVID-19 cases per 1 million people. The authors of the study advised that sole reliance on vaccination as a primary strategy to mitigate COVID-19 and its adverse consequences needs to be re-examined, especially considering the Delta variant and the likelihood of future variants.<ref>{{cite journal |title=Increases in COVID-19 are unrelated to levels of vaccination across 68 countries and 2,947 counties in the United States |journal=European Journal of Epidemiology |date=September 30, 2021 |url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8481107/ |access-date=22 October 2021}}</ref>


====Studies====
====Studies====

Revision as of 01:17, 27 October 2021

COVID-19 vaccine clinical research is the clinical research on COVID-19 vaccines, including their efficacy, effectiveness and safety. There are 24 vaccines authorized for use by national governments, with six vaccines being approved for emergency or full use by at least one WHO-recognised stringent regulatory authority; and five of them are in Phase IV. 204 vaccines under clinical trials that have not yet been authorized. There are also nine clinical trials on heterologous vaccination courses.

In

Oxford–AstraZeneca, Convidecia, and Janssen), and six subunit vaccines (Abdala, COVAX-19, EpiVacCorona, MVC-COV1901, Soberana 02, and ZF2001).[1][2] In total, 330 vaccine candidates are in various stages of development, with 102 in clinical research, including 30 in Phase I trials, 30 in Phase I–II trials, 25 in Phase III trials, and 8 in Phase IV development.[1]

Formulation

As of September 2020[update], eleven of the vaccine candidates in clinical development use

immunological adjuvant is a substance formulated with a vaccine to elevate the immune response to an antigen, such as the COVID‑19 virus or influenza virus.[4] Specifically, an adjuvant may be used in formulating a COVID‑19 vaccine candidate to boost its immunogenicity and efficacy to reduce or prevent COVID‑19 infection in vaccinated individuals.[4][5] Adjuvants used in COVID‑19 vaccine formulation may be particularly effective for technologies using the inactivated COVID‑19 virus and recombinant protein-based or vector-based vaccines. Aluminum salts, known as "alum", were the first adjuvant used for licensed vaccines, and are the adjuvant of choice in some 80% of adjuvanted vaccines.[5] The alum adjuvant initiates diverse molecular and cellular mechanisms to enhance immunogenicity, including release of proinflammatory cytokines.[4][5]

Trial and authorization status

Phase I trials test primarily for safety and preliminary dosing in a few dozen healthy subjects, while Phase II trials – following success in Phase I – evaluate

control group, and test effectiveness of the vaccine to prevent the disease (an "interventional" or "pivotal" trial), while monitoring for adverse effects at the optimal dose.[6][7] Definition of vaccine safety, efficacy, and clinical endpoints in a Phase III trial may vary between the trials of different companies, such as defining the degree of side effects, infection or amount of transmission, and whether the vaccine prevents moderate or severe COVID‑19 infection.[8][9][10]

A clinical trial design in progress may be modified as an "adaptive design" if accumulating data in the trial provide early insights about positive or negative efficacy of the treatment.[11][12] Adaptive designs within ongoing Phase II–III clinical trials on candidate vaccines may shorten trial durations and use fewer subjects, possibly expediting decisions for early termination or success, avoiding duplication of research efforts, and enhancing coordination of design changes for the Solidarity trial across its international locations.[11][13]

List of authorized and approved vaccines

National

Biologic License Applications for the Pfizer–BioNTech and Moderna COVID‑19 vaccines have been submitted to the US Food and Drug Administration (FDA).[14][15]

  • RNA vaccines and DNA vaccines   Pfizer–BioNTech   Moderna   ZyCoV-D
    RNA vaccines and DNA vaccines
  • Adenovirus vector vaccines   Oxford–AstraZeneca   Janssen   Sputnik V   Sputnik Light   Convidecia
    Sputnik V
  • Inactivated virus vaccines   Sinopharm (BBIBP)   CoronaVac   Covaxin   Sinopharm (WIBP)   Others
    Sinopharm (WIBP)
      Others
  • Subunit vaccines   Abdala   ZF2001   EpiVacCorona   Soberana 02   Medigen (MVC)   COVAX-19
    Medigen (MVC)
  • The table below shows various vaccines authorized either for full or emergency use so far, with various other details.

    COVID-19 vaccines authorized for emergency use or approved for full use
    Template:COVID-19 vaccine authorizations

    Vaccine candidates in human trials

    The table below shows various vaccine candidates and the phases which they have completes so far. Current phases are also shown along with other details.

    COVID‑19 candidate vaccines in Phase I–III trials
    COVID‑19 vaccine candidates in Phase I–III trials[16][17][18]
    ()
    Vaccine candidates,
    developers, and sponsors
    Country of origin Type (technology) Current phase (participants)
    design
    Completed phase[a] (participants)
    Immune response
    Pending authorization
    Sanofi–GSK COVID-19 vaccine (VAT00008, Vidprevtyn)
    Sanofi Pasteur, GSK
    France, United Kingdom
    recombinant
    protein)
    Phase III (37,430)[19][20]
    A Parallel-group, Phase III, Multi-stage, Modified Double-blind, Multi-armed Study to Assess the Efficacy, Safety, and Immunogenicity of Two SARS-CoV-2 Adjuvanted Recombinant Protein Vaccines (Monovalent and Bivalent) for Prevention Against COVID-19 in Adults 18 Years of Age and Older.
    May 2021 – Mar 2023, Colombia, Dominican Republic, Ghana, Honduras, India (3,000), Japan, Kenya,[21] Mexico,[22] Nigeria, Pakistan, Sri Lanka, Uganda, United States
    Phase I–II (1,160)
    Phase I-IIa (440): Immunogenicity and Safety of SARS-CoV-2 Recombinant Protein Vaccine Formulations (With or Without Adjuvant) in Healthy Adults 18 Years of Age and Older.[23]
    Phase IIb (720): Immunogenicity and Safety of SARS-CoV-2 Recombinant Protein Vaccine With AS03 Adjuvant in Adults 18 Years of Age and Older.[24]
    Sep 2020 – Apr 2022, United States
    Emergency (5)
    Nanocovax[31]
    Nanogen Pharmaceutical Biotechnology JSC
    Vietnam
    recombinant spike protein with aluminum adjuvant)[32][33]
    Phase III (13,000)[34][35]
    Adaptive, multicenter, randomized, double-blind, placebo-controlled
    Jun 2021 – Jul 2022, Vietnam
    Phase I–II (620)[36]
    Phase I (60): Open label, dose escalation.
    Phase II (560): Randomization, double-blind, multicenter, placebo-controlled.
    Dec 2020 – Jun 2021, Vietnam
    Emergency (1)
    UB-612
    United Biomedical,Inc, Vaxxinity, DASA
    Brazil, Taiwan, United States Subunit (Multitope peptide based S1-RBD-protein based vaccine) Phase III (18,320)[38][39]
    Phase IIb/III (7,320): Randomized, Multicenter, Double-Blind, Placebo Controlled, Dose-Response.
    Phase III (11,000)
    Jan 2021 – Mar 2023, Taiwan (phase 2b/3), India (phase 3)[40]
    Phase I–II (3,910)[41]
    Phase 1 (60): Open-label study
    Phase IIa (3,850): Placebo-controlled, Randomized, Observer-blind Study.
    Sep 2020 – Jan 2021, Taiwan
    Emergency (1)
    SCB-2019[43][44]
    Clover Biopharmaceuticals,[45][46] Dynavax Technologies,[47] CEPI
    China Subunit (spike protein trimeric subunit with combined CpG 1018 and aluminium adjuvant) Phase III (30,300)
    Phase II/III (30,000): Randomized, double-blind, controlled.
    Phase III (300): Double-blind, randomized, controlled.[48]
    Mar 2021 – Oct 2022, Belgium, Brazil, Colombia, Dominican Republic, Germany, Nepal, Panama, the Philippines, Poland, South Africa, Ukraine
    Phase I–II (950)
    Phase I (150): Randomized, Double-blind, Placebo-controlled, First-in-human.
    Phase II (800): Multi-center, Double-blind, Randomized, Controlled.[49]
    Jun 2020 – Oct 2021, Australia (phase 1), China (phase 2)
    Emergency (1)
    S-268019
    Shionogi
    Japan Subunit Phase III (54,915)[50][51]
    Phase II/III: Open-label.
    Phase III: Randomized, observer-blind, placebo-controlled cross-over.
    Oct 2021 – Dec 2022, Japan (3,100), Vietnam
    Phase I–II (300)[52]
    Randomized, double-blind, placebo-controlled, parallel-group.
    Dec 2020 – Aug 2021, Japan
    West China Hospital (WestVac Biopharma), Sichuan University
    China
    recombinant
    with Sf9 cell)
    Phase III (40,000)[53]
    Multicenter, randomized, double-blind, placebo-controlled.
    Jun 2021 – Feb 2022, Indonesia, Kenya, Malaysia,[54] Mexico, Nepal, the Philippines (5,000)[55]
    Phase I–II (5,128)[56][57][58]
    Phase I (168): Single-center, Randomized, Placebo-controlled, Double-blind.
    Phase IIa (960):Single-center, Randomized, Double-Blinded, Placebo-Controlled.
    Phase IIb (4,000):Single-center, Randomized, Double-Blinded, Placebo-Controlled.
    Aug 2020 – May 2021, China
    DelNS1-2019-nCoV-RBD-OPT (DelNS1-nCoV-RBD LAIV)
    Beijing Wantai Biological Pharmacy, University of Hong Kong, Xiamen University
    China, Hong Kong Replicating viral vector (flu-based-RBD[clarification needed]) Phase III (40,000)[59]
    Multi-center, Randomized, Double-blind, Placebo controlled.
    Oct 2021 – Apr 2022, the Philippines
    Phase I–II (895)[60][61]
    Phase I (60+115=175)
    Phase II (720)
    Sep 2020 – Sep 2022, China (60), Hong Kong (115)
    Versamune-CoV-2FC [pt]
    Farmacore Biotechnology, PDS Biotechnology Corporation, Faculty of Medicine of Ribeirão Preto
    Brazil, United States Subunit Phase III (30,000)[62]
    Double-blind, randomized controlled.
    Aug–Dec 2021, Brazil
    Phase I–II (360)[63][64][65]
    Double-blind, randomized controlled.
    Mar–Aug 2021, Brazil
    PLA Academy of Military Science, Walvax Biotech,[67]
    Suzhou Abogen Biosciences
    China
    RNA
    Phase III (28,000)[68]
    Multi-center, Randomized, Double-blind, Placebo-controlled
    May–Nov 2021, China,[69] Colombia, Indonesia, Malaysia, Mexico, Nepal, Pakistan, the Philippines, Turkey
    Phase I–II (908)
    Phase I (168)
    Phase II (420)
    Phase I/II (320)[70]
    Jun 2020 – Oct 2021, China[71]
    V-01
    Livzon Mabpharm, Inc.
    China
    recombinant
    fusion protein)
    Phase III (22,500)[72]
    Global, multi-center, randomized, double-blind, placebo-controlled.
    Aug 2021–Mar 2023, the Philippines
    Phase I (1,060)[73][74]
    Phase I (180): Single-center, randomized, double-blind and placebo-controlled.
    Phase II (880): Randomized, double-blind, and placebo-controlled.
    Feb–May 2021, China
    ARCT-154 (VBC-COV19-154 in Vietnam)[75][76][77]
    Arcturus Therapeutics, Vinbiocare
    United States, Vietnam
    RNA
    Phase III (20,600)
    Phase IIIa (600): Randomized, double-blinded, placebo controlled.
    Phase IIIb (20,000): Randomized, double-blinded, placebo controlled.[78][79]
    Oct-Dec 2021, Vietnam
    Phase I–II (400)
    Phase I (100): Randomized, double-blinded, placebo controlled.
    Phase II (300): Randomized, double-blinded, placebo controlled.
    Aug-Oct 2021, Vietnam[80]
    ReCOV
    Jiangsu Rec-Biotechnology Co Ltd
    China Subunit (Recombinant two-component spike and RBD protein (CHO cell)) Phase II–III (20,301)[81]
    Multi-center, randomized, double-blind, placebo-controlled.
    Dec 2021–Dec 2022, China, New Zealand, the Philippines
    Phase I (160)[82]
    First-in-human, randomized, double-blind, placebo-controlled, dose-finding.
    Jun–Dec 2021, New Zealand
    BriLife (IIBR-100)[83]
    The Israel Institute for Biological Research
    Israel
    recombinant
    )
    Phase III (20,000)[84]
    Randomized, multi-center, placebo-controlled.
    Sept – Dec 2021, Israel
    Phase I–II (1,040)[85]
    Randomized, multi-center, placebo-controlled, dose-escalation.
    Oct 2020 – May 2021, Israel
    Zhongyianke Biotech–Liaoning Maokangyuan Biotech COVID-19 vaccine
    Zhongyianke Biotech, Liaoning Maokangyuan Biotech, Academy of Military Medical Sciences
    China
    Recombinant
    )
    Phase III (14,600)[86]
    International multicenter, randomized, double-blind, placebo-controlled.
    Sep 2021–?, China
    Phase I–II (696)[87]
    Phase I (216): Randomized, placebo-controlled, double-blind.
    Phase II (480): Single-center, randomized, double blinded, placebo controlled.[88]
    Oct 2020 – Jul 2021, China
    GX-19 (GX-19N)[89][90][91]
    Genexine consortium,[92][93] International Vaccine Institute
    South Korea DNA Phase II–III (14,000)[94]
    Randomized, double-blinded, placebo-controlled.
    Oct 2021 – Oct 2022, Indonesia, Seoul
    Phase I–II (410)
    Phase I-II (170+210+30): Multi-center, some open-labeled, some double-blinded, single arm, randomized, placebo-controlled
    Jun 2020 – Jul 2021, Seoul
    GRAd-COV2[95][96]
    ReiThera, Lazzaro Spallanzani National Institute for Infectious Diseases
    Italy Adenovirus vector (modified gorilla adenovirus vector, GRAd) Phase III (10,300)[97][98]
    Randomized, stratified, observer-blind, placebo-controlled.
    Mar–Oct 2021, Italy
    Phase I (90)[99]
    Subjects (two groups: 18–55 and 65–85 years old) randomly receiving one of three escalating doses of GRAd-COV2 or a placebo, then monitored over a 24-week period. 93% of subjects who received GRAd-COV2 developed anti-bodies.
    Aug–Dec 2020, Rome
    Korea National Institute of Health, International Vaccine Institute
    South Korea, United States DNA vaccine (plasmid delivered by electroporation) Phase III (7,517)
    Randomized, placebo-controlled, multi-center.[102]
    Nov 2020 – Jan 2023, Brazil, Colombia, Mexico, the Philippines, United States[b]
    Phase I–II (920)
    Phase Ia (120): Open-label trial.
    Phase Ib-IIa (160): Dose-Ranging Trial.[103]
    Phase II (640): Randomized, double-blinded, placebo-controlled, dose-finding.[104]
    April 2020 – Feb 2022, China (phase II), South Korea (phase Ib-IIa), United States
    DS-5670[105]
    Daiichi Sankyo[106]
    Japan
    RNA
    Phase II–III (5,028)[107]
    Randomized, Active-comparator, Observer-blind.
    Dec 2021 – Jul 2023, Japan
    Phase I–II (152)[108]
    A Phase 1/2 Study to Assess the Safety, Immunogenicity and Recommended Dose of DS-5670a (COVID-19 Vaccine) in Japanese Healthy Adults and Elderly Subjects.
    Mar 2021 – Jul 2022, Japan
    GBP510
    SK Bioscience Co. Ltd., GSK
    South Korea, United Kingdom Subunit (Recombinant protein nanoparticle with adjuvanted with AS03) Phase III (4,000)[109]
    Randomized, active-controlled, observer-blind, parallel-group, multi-center.[110]
    Aug 2021-Mar 2022, South Korea
    Phase I–II (580)[111][112]
    Phase I-II (260-320): Placebo-controlled, randomized, observer-blinded, dose-finding.
    Jan–Aug 2021, South Korea
    HGC019[113]
    Gennova Biopharmaceuticals, HDT Biotech Corporation[114]
    India, United States
    RNA
    Phase II–III (4,400)[115]
    A prospective, multicentre, randomized, active-controlled (with COVISHIELD), observer-blind study to evaluate safety, tolerability and immunogenicity in healthy adults.
    Phase II (400)
    Phase III (4,000)
    Sep 2021 – Sep 2022, India
    Phase I–II (620)[116][117][118]
    Randomized, phase I/II, placebo-controlled, dose-ranging, parallel-group, crossover, multi-centre study to evaluate the safety, tolerability and immunogenicity in healthy adult subjects.
    Phase I (120) open-label study in healthy 18-70 year-olds.
    Phase II (500) observer-blind study in healthy 18-75 year-olds.
    Apr 2021 – Oct 2021, India
    KD-414
    KM Biologics Co
    Japan
    SARS‑CoV‑2
    Phase II–III (2,000)[119]
    Multicenter, open-label, non-randomized.
    Oct 2021 – Mar 2023, Japan
    Phase I–II (210)[120]
    Randomized, double blind, placebo control, parallel group.[121]
    Mar 2021 – Dec 2022, Japan
    LYB001
    Yantai Patronus Biotech Co., Ltd[122]
    China Virus-like particle[123] Phase II–III (1,900)[124]
    Phase II: Randomized, double blinded, placebo-controlled
    Phase III: Single-armed, open-label expanded.
    Jan 2022 – Mar 2023, Laos
    Phase I (100)[125]
    Randomized, double blinded, placebo-controlled.
    Dec 2021 – Feb 2022, Laos
    AKS-452
    Akston Biosciences, University Medical Center Groningen
    Netherlands Subunit Phase II–III (1,600)[126]
    Randomized, double-blinded, placebo-controlled, parallel-group, multi-centre, adaptive, seamless bridging.
    Oct 2021–Dec 2022, India
    Phase I–II (112)[127]
    Non-randomized, Single-center, open-label, combinatorial.
    Apr–Sep 2021, Netherlands
    AG0302-COVID‑19[128][129]
    AnGes Inc.,[130] AMED
    Japan DNA vaccine (plasmid) Phase II–III (500)
    Randomized, double-blind, placebo controlled[131]
    Nov 2020 – Apr 2021, Japan
    Phase I–II (30)
    Randomized/non-randomized, single-center, two doses
    Jun–Nov 2020, Osaka
    202-CoV
    Shanghai Zerun Biotechnology Co., Ltd., Walvax Biotech
    China Subunit (Spike protein (CHO cell) 202-CoV with CpG / alum adjuvant) Phase II (1,056)[132]
    Randomized, Double-blinded, Placebo-controlled.
    July–Dec 2021, China
    Phase I (144)[133]
    Randomized, double-blinded, placebo-controlled.
    July–Dec 2021, China
    Vaxart COVID-19 vaccine
    Vaxart
    United States Viral vector Phase II (896)[134]
    Double-Blind, Multi-Center, Randomized, Placebo-Controlled, Dose-Ranging.
    Oct 2021 – Mar 2022, United States
    Phase I (83)[135][136]
    Phase Ia (35): Double-blind, randomized, placebo-controlled, first-in-Human.
    Phase Ib (48): Multicenter, randomized, double-blind, placebo-controlled.
    Sep 2020 – Aug 2021, United States
    Providence Therapeutics
    Canada
    RNA
    Phase II (890)[138]
    Randomized, double-dummy, observer-blind.
    Aug 2021–Feb 2022, Canada
    Phase I (60)[137]
    First-in-Human, Observer-Blinded, Randomized, Placebo Controlled.[139]
    Jan–May 2021, Canada
    Unnamed
    Ningbo Rong’an Biological Pharmaceutical Co., Ltd.
    China
    SARS‑CoV‑2
    Phase II (600)[140]
    Randomized, double-blind, placebo-controlled.
    Oct 2021 – Mar 2022, China
    Phase I (150)[141]
    Randomized, double-blind, placebo-controlled.
    Aug – Oct 2021, China
    Unnamed
    Tsinghua University, Tianjin Medical University,[142] Walvax Biotech
    China Viral vector Phase II (360)[143]
    Jul–Nov 2021, China
    Phase I (60)[144]
    May–Jun 2021, China
    INNA-051
    Ena Respiratory
    Australia Viral vector Phase II (423)[145]
    Randomized, double-blind, placebo-controlled.
    Mar  – Dec 2022, Australia
    Phase I (124)[146]
    Randomised, double blind, placebo-controlled.
    Jun – Oct 2021, Australia
    mRNA-1283
    Moderna
    United States
    RNA
    Phase II (420)[147]
    Randomized, stratified, observer-blind.
    Dec 2021 – Jan 2023, United States
    Phase I (106)[148]
    Randomized, observer-blind, dose-ranging study.
    Mar 2021 – Apr 2022, United States
    Unnamed
    Ihsan Gursel, Scientific and Technological Research Council of Turkey
    Turkey Virus-like particle Phase II (330)[149]
    Randomized, parallel dose assigned, double blind, multi center.
    Jun – Sep 2021, Turkey
    Phase I (36)[150]
    double-blinded, randomised, placebo controlled.
    Mar – May 2021, Turkey
    City of Hope Medical Center
    United States Viral vector Phase II (240)[151]
    Multi-center, observer-blinded, EUA vaccine-controlled, randomized.
    Aug 2021 – Jun 2023, California
    Phase I (129)[152]
    Dose Escalation Study.
    Dec 2020 – Nov 2022, California
    ABNCoV2
    Bavarian Nordic.[153] Radboud University Nijmegen
    Denmark, Netherlands Virus-like particle Phase II (210)[154][155]
    Single center, sequential dose-escalation, open labelled trial.
    Aug–Dec 2021, Germany
    Phase I (42)[156]
    Single center, sequential dose-escalation, open labelled trial.
    Mar–Dec 2021, Netherlands
    SCB-2020S
    Clover Biopharmaceuticals[157]
    China Subunit Phase I–II (150)[158]
    Randomized, controlled, observer-blind.
    Aug 2021 – Apr 2022, Australia
    Preclinical
    SCTV01C
    Sinocelltech
    China Subunit Phase I–II (1,712)[159][160][161]
    540+420+752=1,712: multicenter, randomized, double-blinded trial.
    Aug 2021 – Jun 2023, China
    Preclinical
    ButanVac, COVIVAC, HXP-GPOVac, Patria)
    Icahn School of Medicine at Mount Sinai, Institute of Vaccines and Medical Biologicals,[162] Butantan Institute, Laboratorio Avimex, National Council of Science and Technology, Mahidol University, University of Texas at Austin
    Brazil, Mexico, Thailand, United States, Vietnam
    SARS‑CoV‑2
    Phase I–II (12,750)
    Randomized, placebo-controlled, observer-blind.
    Mar 2021 – May 2022; Brazil (5,394), Mexico (Phase I: 90, Phase II: 396),[163] Thailand (460),[164] United States (Phase I: 35),[165] Vietnam (495)[166][167]
    Preclinical
    Stemirna COVID-19 vaccine
    Stemirna Therapeutics Co. Ltd.
    China
    RNA
    Phase I–II (880)[168][169]
    Phase I (240): Randomized, double-blind, placebo-controlled.
    Phase I/II (640): Open-label.
    Mar 2021–Feb 2022, China (phase I), Lao (phase I/II)
    Preclinical
    ARCT-021[170][171]
    Arcturus Therapeutics, Duke–NUS Medical School
    United States, Singapore
    RNA
    Phase I–II (798)
    Phase I/II (92): Randomized, double-blinded, placebo controlled
    Phase II (600): Randomized, observer-blind, placebo-controlled, multiregional, multicenter trial in healthy adults to evaluate the safety, reactogenicity, and immunogenicity.[172]
    Phase IIa (106): Open label extension trial to assess the safety and long-term immunogenicity by giving single-dose vaccine to the participants from the parent study that received placebo or were seronegative at screening.[173]
    Aug 2020 – Apr 2022, Singapore, United States (phase IIa)
    Preclinical
    Unnamed
    PT Bio Farma
    Indonesia Subunit Phase I–II (780)[174]
    Observer-Blind, Randomized, Controlled.
    Oct 2021 – Jan 2022, Indonesia
    Preclinical
    Variation Biotechnologies
    United States Virus-like particle Phase I (141)[176]
    Randomized, observer-blind, dose-escalation, placebo-controlled
    Mar 2021 – Nov 2022, Canada
    Preclinical
    ICC Vaccine[177]
    Novavax
    United States Subunit Phase I–II (640)[178]
    Randomized, observer-blinded.
    Sep 2021 – Mar 2022, Australia
    Preclinical
    EuCorVac-19[179]
    EuBiologics Co
    South Korea Subunit (spike protein using the recombinant protein technology and with an adjuvant) Phase I–II (280)
    Dose-exploration, randomized, observer-blind, placebo-controlled
    Feb 2021 – Mar 2022, the Philipppines (phase II), South Korea (phase I/II)
    Preclinical
    PHH-1V
    Hipra[180]
    Spain Subunit Phase I–II (286)[181][182]
    Phase I/IIa (30): Randomized, controlled, observer-blinded, dose-escalation.
    Phase IIb (256): Randomized, controlled, observer-blinded.
    Aug–Dec 2021, Spain (phase I/IIa), Vietnam (phase IIb)
    Preclinical
    RBD SARS-CoV-2 HBsAg VLP
    SpyBiotech
    United Kingdom Virus-like particle Phase I–II (280)[183]
    Randomized, placebo-controlled, multi-center.
    Aug 2020 – ?, Australia
    Preclinical
    AV-COVID-19
    AIVITA Biomedical, Inc., Ministry of Health (Indonesia)
    United States, Indonesia Dendritic cell vaccine (
    GM-CSF
    )
    Phase I–II (202)[184][185]
    Adaptive.
    Dec 2020 – Feb 2022, Indonesia (phase I), United States (phase I/II)
    Preclinical
    COVID-eVax
    Takis Biotech
    Italy DNA Phase I–II (160)[186]
    Multicenter, open label.
    Phase I: First-in-human, dose escalation.
    Phase II: single arm or two arms, randomized, dose expansion.
    Feb–Sep 2021, Italy
    Preclinical
    India Adenovirus vector (intranasal) Phase I–II (375)[187][189]
    Phase I (175): Randomized, double-blinded, multicenter.
    Phase II (200): Randomized, double blind, multicenter.[190]
    Mar 2021–?, India
    Preclinical
    VB10.2129 and VB10.2210
    Nykode Therapeutics[191][192]
    Norway DNA Phase I–II (160)[193][194]
    Open Label, Dose Escalation.
    Oct 2021–Jun 2022, Norway
    Preclinical
    ChulaCov19
    Chulalongkorn University
    Thailand
    RNA
    Phase I–II (72)[195]
    Phase 1 (72): single-center, dose-escalation, first in human study in 2 age groups: 18-55 years-old and 56-75 years-old.
    Phase 2: Multi-center, observer-blinded, placebo-controlled study to assess the safety, reactogenicity, and immunogenicity in healthy adults between 18-75 years old.
    May-September 2021, Thailand
    Preclinical
    COVID‑19/aAPC[196]
    Shenzhen Genoimmune Medical Institute[197]
    China Lentiviral vector (with minigene modifying aAPCs) Phase I (100)[196]
    Single group, open-label study to evaluate safety and immunity.
    Feb 2020 – Jul 2023, Shenzhen
    Preclinical
    LV-SMENP-DC[198]
    Shenzhen Genoimmune Medical Institute[197]
    China
    DCs
    )
    Phase I–II (100)[198]
    Single-group, open label, multi-center study to evaluate safety and efficacy.
    Mar 2020 – Jul 2023, Shenzhen
    Preclinical
    ImmunityBio COVID-19 vaccine (hAd5)
    ImmunityBio
    United States Viral vector Phase I–II (540)[199][200][201][202][203]
    Phase 1/2 Study of the Safety, Reactogenicity, and Immunogenicity of a Subcutaneously- and Orally- Administered Supplemental Spike & Nucleocapsid-targeted COVID-19 Vaccine to Enhance T Cell Based Immunogenicity in Participants Who Have Already Received Prime + Boost Vaccines Authorized For Emergency Use.
    Oct 2020  – Sep 2021, South Africa, United States
    Preclinical
    COVAC[204]
    VIDO (University of Saskatchewan)
    Canada Subunit (spike protein + SWE adjuvant) Phase I (120)[204]
    Randomized, observer-blind, dose-escalation.[205][206]
    Feb 2021 – Apr 2023, Brazil Halifax
    Preclinical
    COVI-VAC (CDX-005)[207]
    Codagenix Inc.
    United States Attenuated Phase I (48)[208]
    First-in-human, randomised, double-blind, placebo-controlled, dose-escalation
    Dec 2020 – Jun 2021, United Kingdom
    Preclinical
    CoV2 SAM (LNP)
    GSK
    United Kingdom
    RNA
    Phase I (40)[209]
    Open-label, dose escalation, non-randomized
    Feb–Jun 2021, United States
    Preclinical
    COVIGEN[210]
    Bionet Asia, Technovalia, University of Sydney
    Australia, Thailand DNA Phase I (150)[211]
    Double-blind, dose-ranging, randomised, placebo-controlled.
    Feb 2021 – Jun 2022, Australia, Thailand
    Preclinical
    MV-014-212[212]
    Meissa Vaccine Inc.
    United States Attenuated Phase I (130)[213]
    Randomized, double-blinded, multicenter.
    Mar 2021 – Oct 2022, United States
    Preclinical
    KBP-201
    Kentucky Bioprocessing
    United States Subunit Phase I–II (180)[214]
    First-in-human, observer-blinded, randomized, placebo-controlled, parallel group
    Dec 2020 – May 2022, United States
    Preclinical
    AdCLD-CoV19
    Cellid Co
    South Korea Viral vector Phase I–II (150)[215]
    Phase I: Dose Escalation, Single Center, Open.
    Phase IIa: Multicenter, Randomized, Open.
    Dec 2020 – Jul 2021, South Korea
    Preclinical
    AdimrSC-2f
    Adimmune Corporation
    Taiwan Subunit (Recombinant RBD +/− Aluminium) Phase I–II (310)[216][217]
    Phase I (70): Randomized, single center, open-label, dose-finding.
    Phase I/II (240): Placebo-controlled, randomized, double-blind, dose-finding.
    Aug 2020–Sep 2022, Indonesia (phase I/II), Taiwan (phase I)
    Preclinical
    GLS-5310
    GeneOne Life Science Inc.
    South Korea DNA Phase I–II (345)[218]
    Multicenter, Randomized, Combined Phase I Dose-escalation and Phase IIa Double-blind.
    Dec 2020 – Jul 2022, South Korea
    Preclinical
    Covigenix VAX-001
    Entos Pharmaceuticals Inc.
    Canada DNA Phase I–II (72)[219]
    Placebo-controlled, randomized, observer-blind, dose ranging adaptive.
    Mar–Aug 2021, Canada
    Preclinical
    NBP2001
    SK Bioscience Co. Ltd.
    South Korea Subunit (Recombinant protein with adjuvanted with alum) Phase I (50)[220]
    Placebo-controlled, Randomized, Observer-blinded, Dose-escalation.
    Dec 2020 – Apr 2021, South Korea
    Preclinical
    CoVAC-1
    University of Tübingen
    Germany Subunit (Peptide) Phase I–II (104)[221][222]
    Phase I (36): Placebo-controlled, Randomized, Observer-blinded, Dose-escalation.
    Phase I/II (68): B-pVAC-SARS-CoV-2: Phase I/II Multicenter Safety and Immunogenicity Trial of Multi-peptide Vaccination to Prevent COVID-19 Infection in Adults With Bcell/ Antibody Deficiency.
    Nov 2020 – Feb 2022, Germany
    Preclinical
    bacTRL-Spike
    Symvivo
    Canada DNA Phase I (24)[223]
    Randomized, observer-blind, placebo-controlled.
    Nov 2020 – Feb 2022, Australia
    Preclinical
    ChAdV68-S (SAM-LNP-S)
    NIAID, Gritstone Oncology
    United States Viral vector Phase I (150)[224]
    Open-label, dose and age escalation, parallel design.
    Mar 2021 – Sep 2022, United States
    Preclinical
    SpFN COVID-19 vaccine
    WRAIR's Emerging Infectious Diseases Branch (EIDB)
    United States Subunit Phase I (72)[225]
    Randomized, double-blind, placebo-controlled.
    Apr 2021 – Oct 2022, United States
    Preclinical
    MVA-SARS-2-S (MVA-SARS-2-ST)
    University Medical Center Hamburg-Eppendorf
    Germany Viral vector Phase I–II (270)[226][227]
    Phase I (30): Open, Single-center.
    Phase Ib/IIa (240): Multi-center, Randomized Controlled.
    Oct 2020 – Mar 2022, Germany
    Preclinical
    Koçak-19 Inaktif Adjuvanlı COVID-19 vaccine
    Kocak Farma
    Turkey
    SARS‑CoV‑2
    Phase I (38)[228]
    Phase 1 Study for the Determination of Safety and Immunogenicity of Different Strengths of Koçak-19 Inaktif Adjuvanlı COVID-19 Vaccine, Given Twice Intramuscularly to Healthy Volunteers, in a Placebo Controlled Study Design.
    Mar–Jun 2021, Turkey
    Preclinical
    CoV2-OGEN1
    Syneos Health, US Specialty Formulations
    United States Subunit Phase I (45)[229]
    First-In-Human
    Jun–Dec 2021, New Zealand
    Preclinical
    CoVepiT
    OSE Immunotherapeutics
    France Subunit Phase I (48)[230][231]
    Randomized, open label.
    Apr–Sept 2021, France
    Preclinical
    HDT-301[232] (QTP104)
    HDT Biotech Corporation, Senai Cimatec, Quartis[233]
    Brazil, South Korea, United States
    RNA
    Phase I (189)[234][235]
    Phase I (90+63+36): Randomized, open-label, dose-escalation.
    Aug 2021–Jul 2023, Brazil, South Korea, United States
    Preclinical
    SC-Ad6-1
    Tetherex Pharmaceuticals
    United States Viral vector Phase I (40)[236]
    First-In-Human, Open-label, Single Ascending Dose and Multidose.
    Jun–Dec 2021, Australia
    Preclinical
    Unnamed
    Osman ERGANIS, Scientific and Technological Research Council of Turkey
    Turkey
    SARS‑CoV‑2
    Phase I (50)[237]
    Phase I Study Evaluating the Safety and Efficacy of the Protective Adjuvanted Inactivated Vaccine Developed Against SARS-CoV-2 in Healthy Participants, Administered as Two Injections Subcutaneously in Two Different Dosages.
    Apr–Oct 2021, Turkey
    Preclinical
    EXG-5003
    Elixirgen Therapeutics, Fujita Health University
    Japan, United States
    RNA
    Phase I–II (60)[238]
    First in Human, randomized, placebo-controlled.
    Apr 2021 – Jan 2023, Japan
    Preclinical
    IVX-411
    Icosavax, Seqirus Inc.
    United States Virus-like particle Phase I–II (168)[239][240]
    Phase I/II (84): Randomized, observer-blinded, placebo-controlled.
    Jun 2021–2022, Australia
    Preclinical
    QazCoVac-P[241]

    Research Institute for Biological Safety Problems
    Kazakhstan Subunit Phase I–II (244)[242]
    Phase I: Randomized, blind, placebo-controlled.
    Phase II: Randomized, open phase.
    Jun – Dec 2021, Kazakhstan
    Preclinical
    LNP-nCOV saRNA-02
    MRC/UVRI & LSHTM Uganda Research Unit
    Uganda
    RNA
    Phase I (42)[243]
    A Clinical Trial to Assess the Safety and Immunogenicity of LNP-nCOV saRNA-02, a Self-amplifying Ribonucleic Acid (saRNA) Vaccine, in SARS-CoV-2 Seronegative and Seropositive Uganda Population.
    Sep 2021 – Jun 2022, Uganda
    Preclinical
    Baiya SARS-CoV-2 Vax 1[244]
    Baiya Phytopharm Co Ltd.
    Thailand Plant-based Subunit (RBD-Fc + adjuvant) Phase I (96)[245]
    Randomized, open-label, dose-finding.
    Sep–Dec 2021, Thailand
    Preclinical
    CVXGA1
    CyanVac LLC
    United States Viral vector Phase I (80)[246]
    Open-label
    July–Dec 2021, United States
    Preclinical
    Unnamed
    St. Petersburg Scientific Research Institute of Vaccines and Sera of Russia at the
    Federal Medical Biological Agency
    Russia Subunit (Recombinant) Phase I–II (200)[247][248]
    Jul–Aug 2021, Russia
    Preclinical
    LVRNA009
    Liverna Therapeutics Inc.
    China
    RNA
    Phase I (24)[249]
    July–Nov 2021, China
    Preclinical
    United States
    RNA
    Phase I–II (72)[250]
    Randomized, observer-blind.
    Aug 2021–Mar 2023, Singapore, United States
    Preclinical
    BCD-250
    Biocad
    Russia Viral vector Phase I–II (160)[251]
    Randomized, double-blind, placebo-controlled, adaptive, seamless phase I/II.
    Aug 2021–Aug 2022, Russia
    Preclinical
    COVID-19-EDV
    EnGeneIC
    Australia Viral vector Phase I (18)[252]
    Open label, non-randomised, dose escalation.
    Aug 2021–Jan 2022, Australia
    Preclinical
    COVIDITY
    Scancell
    United Kingdom DNA[253] Phase I (40)[254]
    Open-label, two-arm.
    Sep 2021–Apr 2022, South Africa
    Preclinical
    SII Vaccine
    Novavax
    United States Subunit Phase I–II (240)[255]
    randomized, observer-blinded, open-label.
    Oct–Nov 2021, Australia
    Preclinical
    EG-COVID
    Eyegene
    South Korea
    mRNA
    Phase I–II (120)[256][257][258]
    Phase I/IIa: Multi-center, Open-label.
    Feb 2022–May 2023, South Korea
    Preclinical
    PIKA COVID-19 vaccine
    Yisheng Biopharma
    China Subunit Phase I (45)[259]
    Open-label, dose-escalation.
    Sep–Nov 2021, New Zealand
    Preclinical
    Ad5-triCoV/Mac
    McMaster University, Canadian Institutes of Health Research (CIHR)
    Canada Viral vector Phase I (30)[260]
    Open-label.
    Nov 2021–Jun 2023, Canada
    Preclinical
    Unnamed
    University of Hong Kong, Immuno Cure 3 Limited
    Hong Kong DNA Phase I (30)[261]
    Randomized, double-blinded, placebo-controlled, dose-escalation.
    Nov 2021–Jun 2022, Hong Kong
    Preclinical
    MigVax-101
    Oravax Medical[262][263][264]
    Israel Virus-like particle Phase I
    Oct 2021–?, South Africa
    Preclinical
    IN-B009
    HK inno.N[265]
    South Korea Subunit (Recombinant protein) Phase I (40)[266]
    Open-label, dose-escalation.
    Sep 2021–Feb 2023, South Korea
    Preclinical
    naNO-COVID
    Emergex Vaccines
    United Kingdom Subunit Phase I (26)[267]
    Double-blind, randomized, vehicle-controlled, dose-finding.
    Nov 2021–Sep 2022, Switzerland
    Preclinical
    Betuvax-CoV-2
    Human Stem Cells Institute
    Russia Subunit Phase I–II (170)[268][269]
    Sep 2021–?, Russia
    Preclinical
    Covi Vax[270]
    National Research Centre
    Egypt
    SARS‑CoV‑2
    Phase I (72)[271]
    Randomized, open-labeled
    Nov 2021–Feb 2023, Egypt
    Preclinical
    VLPCOV-01
    VLP Therapeutics
    United States mRNA Phase I (45)[272]
    Randomized, placebo-controlled, parallel group, first-in-human.
    Aug 2021–Jan 2023, Japan
    Preclinical
    GRT-R910
    Gritstone Oncology
    United States mRNA Phase I (120)[273]
    A Phase 1 Trial to Evaluate the Safety, Immunogenicity, and Reactogenicity of a Self-Amplifying mRNA Prophylactic Vaccine Boost Against SARS-CoV-2 in Previously Vaccinated Healthy Elderly Adults.
    Sep 2021–Nov 2022, United Kingdom
    Preclinical
    Unnamed
    DreamTec Limited
    Hong Kong Subunit Phase I (30)[274]
    Development of a COVID19 Oral Vaccine Consisting of Bacillus Subtilis Spores Expressing and Displaying the Receptor Binding Domain of Spike Protein of SARS-COV2.
    Apr–Dec 2021, Hong Kong
    Preclinical
    Almansour-001
    Imam Abdulrahman Bin Faisal University, ICON plc
    Ireland, Saudi Arabia DNA Phase I (30)[275]
    Single center, randomized, observer blind, dosage finding.
    Feb–Jul 2022, Ireland, Saudi Arabia
    Preclinical
    Unnamed
    North's Academy of Medical Science Medical biology institute
    North Korea Subunit (spike protein with Angiotensin-converting enzyme 2) Phase I–II (?)[276]
    Jul 2020, North Korea
    Preclinical
    Vabiotech COVID-19 vaccine
    Vaccine and Biological Production Company No. 1 (Vabiotech)
    Vietnam Subunit Preclinical
    Awaited for the conduct on Phase I trial.[277]
    ?
    INO-4802
    Inovio
    United States DNA Preclinical
    Awaited for the conduct on Phase I/II trials.[278]
    ?
    Bangavax (Bancovid)[279][280]
    Globe Biotech Ltd. of Bangladesh
    Bangladesh
    RNA
    Preclinical
    Awaiting for approval from Bangladesh government to conduct the first clinical trial.[281]
    ?
    Unnamed
    Indian Immunologicals, Griffith University[282]
    Australia, India Attenuated Preclinical ?
    EPV-CoV-19[283]
    EpiVax
    United States Subunit (T cell epitope-based protein) Preclinical ?
    Unnamed
    Intravacc[284]
    Netherlands Subunit Preclinical ?
    CureVac–GSK COVID-19 vaccine[285]
    CureVac, GSK
    Germany, United Kingdom
    RNA
    Preclinical ?
    DYAI-100[286] Sorrento Therapeutics, Dyadic International, Inc.[287] United States Subunit Preclinical ?
    Unnamed
    Universiti Putra Malaysia
    Malaysia
    RNA
    Preclinical ?
    CureVac COVID-19 vaccine (CVnCoV)
    CureVac, CEPI
    Germany
    RNA (unmodified RNA)[289]
    Terminated (44,433)[290][291][292][293][294]
    Phase 2b/3 (39,693): Multicenter efficacy and safety trial in adults.
    Phase 3 (2,360+180+1,200+1,000=4,740): Randomized, placebo-controlled, multicenter, some observer-blinded, some open-labeled.
    Nov 2020 – Jun 2022, Argentina, Belgium, Colombia, Dominican Republic, France, Germany, Mexico, Netherlands, Panama, Peru, Spain[295]
    Phase I–II (944)[296][297]
    Phase I (284): Partially blind, controlled, dose-escalation to evaluate safety, reactogenicity and immunogenicity.
    Phase IIa (660):Partially observer-blind, multicenter, controlled, dose-confirmation.
    Jun 2020 – Oct 2021, Belgium (phase I), Germany (phase I), Panama (phase IIa), Peru (phase IIa)
    Emergency (2)
    CORVax12
    OncoSec Medical, Providence Health & Services
    United States DNA Terminated (36)[300]
    Open-label, non-randomized, parallel assignment study to evaluate the safety of prime & boost doses with/without the combination of electroporated IL-12p70 plasmid in 2 age groups: 18-50 years-old and > 50 years-old.
    Dec 2020 – Jul 2021, United States
    Preclinical
    Sanofi–Translate Bio COVID-19 vaccine (MRT5500)[301]
    Sanofi Pasteur and Translate Bio
    France, United States
    RNA
    Terminated (415)[302]
    Interventional, randomized, parallel-group, sequential study consisting of a sentinel cohort followed by the full enrollment cohort. The sentinel cohort is an open-label, step-wise, dose-ranging study to evaluate the safety of 3 dose levels with 2 vaccinations. The full enrollment cohort is a quadruple-blinded study of safety and immunogenicity in 2 age groups, with half receiving a single injection, and the other half receiving 2 injections.
    Mar 2021 – Sep 2021, Honduras, United States, Australia
    Preclinical
    AdCOVID
    Altimmune Inc.
    United States Viral vector Terminated (180)[303][304]
    Double-blind, randomized, placebo-controlled, first-in-Human.
    Feb 2021 – Feb 2022, United States
    Preclinical
    LNP-nCoVsaRNA[305]
    MRC clinical trials unit at Imperial College London
    United Kingdom
    RNA
    Terminated (105)
    Randomized trial, with dose escalation study (15) and expanded safety study (at least 200)
    Jun 2020 – Jul 2021, United Kingdom
    ?
    TMV-083
    Institut Pasteur
    France Viral vector Terminated (90)[306]
    Randomized, Placebo-controlled.
    Aug 2020 – Jun 2021, Belgium, France
    ?
    SARS-CoV-2 Sclamp/ Australia Subunit (molecular clamp stabilized spike protein with MF59) Terminated (120)
    Randomised, double-blind, placebo-controlled, dose-ranging.
    False positive HIV test found among participants.
    Jul–Oct 2020, Brisbane
    ?
    V590[309] and V591/MV-SARS-CoV-2[310] Merck & Co. (Themis BIOscience), Institut Pasteur, University of Pittsburgh's Center for Vaccine Research (CVR), CEPI United States, France
    Vesicular stomatitis virus vector[311] / Measles virus vector[312][unreliable source?
    ]
    Terminated
    In phase I, immune responses were inferior to those seen following natural infection and those reported for other SARS-CoV-2/COVID-19 vaccines.[313]
    1. ^ Latest Phase with published results.
    2. ^ Phase I–IIa in South Korea in parallel with Phase II–III in the US


    Homologous prime-boost vaccination

    In July 2021, the U.S. Food and Drug Administration (FDA) and the Centers for Disease Control and Prevention (CDC) issued a joint statement reporting that a booster dose is not necessary for those who have been fully vaccinated.[314]

    In August 2021, the FDA and the CDC authorized the use of an additional mRNA vaccine dose for immunocompromised individuals.[315][316] The authorization was extended to cover other specific groups in September 2021.[317][318][319]

    In October 2021, the FDA and the CDC authorized the use of either homologous or heterologous vaccine booster doses.[320][321]

    Heterologous prime-boost vaccination

    In October 2021, the US Food and Drug Administration (FDA) and the Centers for Disease Control and Prevention (CDC) authorized the use of either homologous or heterologous vaccine booster doses.[320][321]

    Some experts believe that

    Oxford–AstraZeneca vaccine.[323]

    In February 2021, the Oxford Vaccine Group launched the Com-COV vaccine trial to investigate heterologous prime-boost courses of different COVID-19 vaccines.[324] As of June 2021, the group is conducting two phase II studies: Com-COV and Com-COV2.[325]

    In Com-COV, the two heterologous combinations of the

    Oxford–AstraZeneca and Pfizer–BioNTech vaccines were compared with the two homologous combinations of the same vaccines, with an interval of 28 or 84 days between doses.[326][327][unreliable medical source?
    ]

    In Com-COV2, the first dose is the Oxford–AstraZeneca vaccine or the Pfizer vaccine, and the second dose is the Moderna vaccine, the Novavax vaccine, or a homologous vaccine equal to the first dose, with an interval of 56 or 84 days between doses.[328]

    A study in the UK is evaluating annual heterologous boosters by randomly selecting the following vaccines:

    VLA2001, CureVac, and Janssen.[329]

    Heterologous regimes in clinical trial
    First dose Second dose Schedules Current phase (participants), periods and locations
    Oxford–AstraZeneca
    Pfizer–BioNTech
    Oxford–AstraZeneca
    Pfizer–BioNTech
    Days 0 and 28
    Days 0 and 84
    Phase II (820)[326]
    Feb–Aug 2021, United Kingdom
    Sputnik Light Oxford–AstraZeneca
    BBIBP-CorV
    Phase II (121)[330]
    Feb–Aug 2021, Argentina
    Oxford–AstraZeneca
    Pfizer–BioNTech
    Oxford–AstraZeneca
    Pfizer–BioNTech
    Moderna
    Novavax
    Days 0 and 56–84 Phase II (1,050)[328]
    Mar 2021 – Sep 2022, United Kingdom
    Convidecia ZF2001 Days 0 and 28
    Days 0 and 56
    Phase IV (120)[331]
    Apr–Dec 2021, China
    Oxford–AstraZeneca Pfizer–BioNTech Days 0 and 28 Phase II (676)[332]
    Apr 2021 – Apr 2022, Spain
    Oxford–AstraZeneca
    Pfizer–BioNTech
    Moderna
    Pfizer–BioNTech
    Moderna
    Days 0 and 28
    Days 0 and 112
    Phase II (1,200)[333]
    May 2021 – Mar 2023, Canada
    Pfizer–BioNTech
    Moderna
    Pfizer–BioNTech
    Moderna
    Days 0 and 42 Phase II (400)[334]
    May 2021 – Jan 2022, France
    Oxford–AstraZeneca Pfizer–BioNTech Days 0 and 28
    Days 0 and 21–49
    Phase II (3,000)[335]
    May–Dec 2021, Austria
    Janssen Pfizer–BioNTech
    Janssen
    Moderna
    Days 0 and 84 Phase II (432)[336]
    Jun 2021 – Sep 2022, Netherlands

    Efficacy

    Cumulative incidence curves for symptomatic COVID‑19 infections after the first dose of the Pfizer–BioNTech vaccine (tozinameran) or placebo in a double-blind clinical trial. (red: placebo; blue: tozinameran)[337]

    Vaccine efficacy is the reduction in risk of getting the disease by vaccinated participants in a controlled trial compared with the risk of getting the disease by unvaccinated participants.[338] An efficacy of 0% means that the vaccine does not work (identical to placebo). An efficacy of 50% means that there are half as many cases of infection as in unvaccinated individuals.[citation needed]

    COVID-19 vaccine efficacy may be adversely affected if the arm is held improperly or squeezed so the vaccine is

    injected subcutaneously instead of into the muscle.[339][340] The CDC guidance is to not repeat doses that are administered subcutaneously.[341]

    It is not straightforward to compare the efficacies of the different vaccines because the trials were run with different populations, geographies, and variants of the virus.

    sterilizing immunity,[343] which is necessary to prevent transmission. Vaccine efficacy reflects disease prevention, a poor indicator of transmissibility of SARS‑CoV‑2 since asymptomatic people can be highly infectious.[344] The US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) set a cutoff of 50% as the efficacy required to approve a COVID‑19 vaccine, with the lower limit of the 95% confidence interval being greater than 30%.[345][346][347] Aiming for a realistic population vaccination coverage rate of 75%, and depending on the actual basic reproduction number, the necessary effectiveness of a COVID-19 vaccine is expected to need to be at least 70% to prevent an epidemic and at least 80% to extinguish it without further measures, such as social distancing.[348]

    The observed substantial efficacy of certain mRNA vaccines even after partial (1-dose) immunization[349][337] indicates a non-linear dose-efficacy relation already seen in the phase I-II study[350] and suggests that personalization of the vaccine dose (regular dose to the elderly, reduced dose to the healthy young,[351] additional booster dose to the immunosuppressed[352]) might allow accelerating vaccination campaigns in settings of limited supplies, thereby shortening the pandemic, as predicted by pandemic modeling.[353]

    Ranges below are 95% confidence intervals unless indicated otherwise, and all values are for all participants regardless of age, according to the references for each of the trials. By definition, the accuracy of the estimates without an associated confidence interval is unknown publicly. Efficacy against severe COVID-19 is the most important, since hospitalizations and deaths are a public health burden whose prevention is a priority.[354] Authorized and approved vaccines have shown the following efficacies:

    COVID-19 vaccine efficacy
    ()
    Vaccine Efficacy by severity of COVID-19 Trial location Refs
    Mild or moderate[A] Severe without hospitalization or death[B] Severe with hospitalization or death[C]
    Oxford–AstraZeneca 81% (6091%)[D] 100% (97.5% CI, 72100%) 100%[E] Multinational [355]
    74% (6882%)[F] 100%[E] 100%[E] United States [356]
    Pfizer–BioNTech 95% (9098%)[G] 66% (−125 to 96%)[H][G] Multinational [357]
    95% (9098%)[G] Not reported Not reported United States [358]
    Janssen 66% (5575%)[I][J] 85% (5497%)[J] 100%[E][J][K] Multinational [359]
    72% (5882%)[I][J] 86% (−9 to 100%)[H][J] 100%[E][J][K] United States
    68% (4981%)[I][J] 88% (8100%)[H][J] 100%[E][J][K] Brazil
    64% (4179%)[I][J] 82% (4695%)[J] 100%[E][J][K] South Africa
    Moderna 94% (8997%)[L] 100%[E][M] 100%[E][M] United States [361]
    Sinopharm BIBP 78% (6586%) 100%[E] 100%[E] Multinational [362]
    79% (6688%) Not reported 79% (2694%)[H] Multinational [363]
    Sputnik V 92% (8695%) 100% (94100%) 100%[E] Russia [364]
    CoronaVac 51% (3662%)[N] 84% (5894%)[N] 100% (56100%)[N] Brazil [365][366][367]
    84% (6592%) 100%[E] 100% (20100%)[H] Turkey [368]
    Covaxin
    78% (6586%) 93% (57100%) India [369][370]
    Sputnik Light 79%[E] Not reported Not reported Russia [371]
    Convidecia 66%[E][N] 91%[E][N] Not reported Multinational [372][unreliable medical source?]
    Sinopharm WIBP 73% (5882%) 100%[E][O] 100%[E][O] Multinational [373]
    Abdala 92% (8696%) Not reported Not reported Cuba [374][375][unreliable medical source?]
    Soberana 02 71% (5979%) 63%[E] Not reported Cuba [376]
    67% (5979%) 97%[E] 95%[E] Iran [377][378]
    Soberana 02 and Soberana Plus 92% (8796%) 100%[E] Not reported Cuba [376]
    Novavax 90% (7595%) 100%[E][O] 100%[E][O] United Kingdom [379][380][381]
    60% (2080%)[H] 100%[E][O] 100%[E][O] South Africa
    90% (8395%) Not reported Not reported United States
    Not reported Not reported Mexico
    CureVac 48%[E] Not reported Not reported Multinational [382]
    ZyCoV-D 67%[E] Not reported Not reported India [383][unreliable medical source?]
    EpiVacCorona 79%[E] Not reported Not reported Russia [384][unreliable medical source?]
    ZF2001 82%[E] Not reported Not reported Multinational [385][unreliable medical source?]
    SCB-2019 67% (5477%) Not reported Not reported Multinational [386]
    CoVLP 71% (5980%) Not reported Not reported Multinational [387]
    Sanofi–GSK COVID-19 vaccine 58% (2777%) Not reported Not reported Multinational [388]
    1. ^ Mild symptoms: fever, dry cough, fatigue, myalgia, arthralgia, sore throat, diarrhea, nausea, vomiting, headache, anosmia, ageusia, nasal congestion, rhinorrhea, conjunctivitis, skin rash, chills, dizziness. Moderate symptoms: mild pneumonia.
    2. ^ Severe symptoms without hospitalization or death for an individual, are any one of the following severe respiratory symptoms measured at rest on any time during the course of observation (on top of having either pneumonia, deep vein thrombosis, dyspnea, hypoxia, persistent chest pain, anorexia, confusion, fever above 38 °C (100 °F)), that however were not persistent/severe enough to cause hospitalization or death: Any respiratory rate ≥30 breaths/minute, heart rate ≥125 beats/minute, oxygen saturation (SpO2) ≤93% on room air at sea level, or partial pressure of oxygen/fraction of inspired oxygen (PaO2/FiO2) <300 mmHg.
    3. ^ Severe symptoms causing hospitalization or death, are those requiring treatment at hospitals or results in deaths: dyspnea, hypoxia, persistent chest pain, anorexia, confusion, fever above 38 °C (100 °F), respiratory failure, kidney failure, multiorgan dysfunction, sepsis, shock.
    4. ^ With twelve weeks or more between doses. For an interval of less than six weeks, the trial found an efficacy 55% (3370%).
    5. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad A confidence interval was not provided, so it is not possible to know the accuracy of this measurement.
    6. ^ With a four-week interval between doses. Efficacy is "at preventing symptomatic COVID-19".
    7. ^ a b c COVID-19 symptoms observed in the Pfizer–BioNTech vaccine trials, were only counted as such for vaccinated individuals if they began more than seven days after their second dose, and required presence of a positive RT-PCR test result. Mild/moderate cases required at least one of the following symptoms and a positive test during, or within 4 days before or after, the symptomatic period: fever; new or increased cough; new or increased shortness of breath; chills; new or increased muscle pain; new loss of taste or smell; sore throat; diarrhoea; or vomiting. Severe cases additionally required at least one of the following symptoms: clinical signs at rest indicative of severe systemic illness (RR ≥30 breaths per minute, HR ≥125 beats per minute, SpO2 ≤93% on room air at sea level, or PaO2/FiO2<300mm Hg); respiratory failure (defined as needing high-flow oxygen, non-invasive ventilation, mechanical ventilation, or ECMO); evidence of shock (SBP <90 mm Hg, DBP <60 mm Hg, or requiring vasopressors); significant acute renal, hepatic, or neurologic dysfunction; admission to an ICU; death.[357][358]
    8. ^ a b c d e f This measurement is not accurate enough to support the high efficacy because the lower limit of the 95% confidence interval is lower than the minimum of 30%.
    9. ^ a b c d Moderate cases.
    10. ^ a b c d e f g h i j k l Efficacy reported 28 days post-vaccination for the Janssen single shot vaccine. A lower efficacy was found for the vaccinated individuals 14 days post-vaccination.[359]
    11. ^ a b c d No hospitalizations or deaths were detected 28 days post-vaccination for 19,630 vaccinated individuals in the trials, compared with 16 hospitalizations reported in the placebo group of 19,691 individuals (incidence rate 5.2 per 1000 person-years)[359] and seven COVID-19 related deaths for the same placebo group.[360]
    12. ^ Mild/Moderate COVID-19 symptoms observed in the Moderna vaccine trials, were only counted as such for vaccinated individuals if they began more than 14 days after their second dose, and required presence of a positive RT-PCR test result along with at least two systemic symptoms (fever above 38ºC, chills, myalgia, headache, sore throat, new olfactory and taste disorder) or just one respiratory symptom (cough, shortness of breath or difficulty breathing, or clinical or radiographical evidence of pneumonia).[361]
    13. ^ a b Severe COVID-19 symptoms observed in the Moderna vaccine trials, were defined as symptoms having met the criteria for mild/moderate symptoms plus any of the following observations: Clinical signs indicative of severe systemic illness, respiratory rate ≥30 per minute, heart rate ≥125 beats per minute, SpO2 ≤93% on room air at sea level or PaO2/FIO2 <300 mm Hg; or respiratory failure or ARDS, (defined as needing high-flow oxygen, non-invasive or mechanical ventilation, or ECMO), evidence of shock (systolic blood pressure <90 mmHg, diastolic BP <60 mmHg or requiring vasopressors); or significant acute renal, hepatic, or neurologic dysfunction; or admission to an intensive care unit or death. No severe cases were detected for vaccinated individuals in the trials, compared with thirty in the placebo group (incidence rate 9.1 per 1000 person-years).[361]
    14. ^ a b c d e These Phase III data have not been published or peer reviewed.
    15. ^ a b c d e f No cases detected in trial.


    Effectiveness

    As of August 2021, data from studies in the U.S. and in other countries found that the COVID-19 vaccines available in the United States are "highly protective against severe illness, hospitalization, and death due to COVID-19".[389] In comparison with fully vaccinated people, the CDC found that unvaccinated people were 5 times more likely to be infected, 10 times more likely to be hospitalized, and 11 times more likely to die.[390][391]

    By late August 2021, after the

    Delta variant became dominant, studies concluded that COVID-19 vaccines provided 55 percent protection against infection, 80 percent against symptomatic infection, and at least 90 percent against hospitalization.[392][medical citation needed] The Delta variant, which is about 40 percent more contagious than the alpha variant,[393][medical citation needed] became the dominant strain during the spring of 2021. However, the vaccines still protected against severe illness and hospitalizations with slight reduction in effectiveness.[392][medical citation needed] The CDC similarly found that vaccines were 90 percent effective at preventing hospitalizations.[394]

    As a result of the CDC reports, President Joe Biden said that "virtually all" COVID-19 hospitalizations and deaths in the U.S. were among unvaccinated people.[395] A study in the state of Washington found that unvaccinated people were six times more likely to test positive for COVID-19, 37 times more likely to be hospitalized, and 67 times more likely to die, compared to those who had been vaccinated.[396]

    Researchers note that although current vaccines were not designed against the Delta variant, they nonetheless are highly effective, but to a lesser degree: protection fell from 91% to 66%.[397][unreliable source?][medical citation needed] One expert stated that "those who are infected following vaccination are still not getting sick and not dying like was happening before vaccination."[393] "This virus is the most efficient virus for finding new hosts that are vulnerable," stated Dr. Eric Topol, director and founder of the Scripps Research Translational Institute.[393] By late August 2021 the Delta variant accounted for 99 percent of U.S. cases and was found to double the risk of severe illness and hospitalization for those not yet vaccinated.[398]

    Studies

    The real-world studies of vaccine effectiveness measure to which extent a certain vaccine has succeeded in preventing COVID-19 infection, symptoms, hospitalization and death for the vaccinated individuals in a large population under routine conditions that are less than ideal.[399]

    • In Israel, among the 715,425 individuals vaccinated by the Moderna or Pfizer-BioNTech vaccines during the period 20 December 2020, to 28 January 2021, it was observed for the period starting seven days after the second shot, that only 317 people (0.04%) became sick with mild/moderate COVID-19 symptoms and only 16 people (0.002%) were hospitalized.[400]
    • The Pfizer-BioNTech and Moderna COVID-19 vaccines provide highly effective protection, according to a report from the U.S. Centers for Disease Control and Prevention (CDC). Under real-world conditions, mRNA vaccine effectiveness of full immunization (≥14 days after second dose) was 90% against SARS-CoV-2 infections regardless of symptom status; vaccine effectiveness of partial immunization (≥14 days after first dose but before second dose) was 80%.[401]
    • 15,121 health care workers from 104 hospitals in England, that all had tested negative for COVID-19 antibodies prior of the study, were followed by RT-PCR tests twice a week from 7 December 2020 to 5 February 2021, during a time when the Alpha variant (lineage B.1.1.7) was in circulation as the dominant variant. The study compared the positive results for the 90.7% vaccinated share of their cohort with the 9.3% unvaccinated share, and found that the Pfizer-BioNTech vaccine reduced all infections (including asymptomatic), by 72% (58–86%) three weeks after the first dose and 86% (76–97%) one week after the second dose.[402][needs update]
    • A study of the general population in Israel conducted from 17 January to 6 March 2021, during a time when the Alpha variant was in circulation as the dominant variant, found that the Pfizer vaccine reduced asymptomatic COVID-19 infections by 94% and symptomatic COVID-19 infections by 97%.[403]
    • A study, among pre-surgical patients across the Mayo Clinic system in the United States, showed that mRNA vaccines were 80% protective against asymptomatic infections.[404]
    • A study in England found that a single dose of the Oxford–AstraZeneca COVID-19 vaccine is about 73% (2790%) effective in people aged 70 and older.[405]
    ()
    Vaccine Initial effectiveness by severity of COVID-19 Study location Refs
    Asymptomatic Symptomatic Hospitalization Death
    Oxford–AstraZeneca 70% (6971%) Not reported 87% (8588%) 90% (8892%) Brazil [406]
    Not reported 89% (7894%)[i] Not reported Not reported England [408]
    Not reported Not reported Not reported 89%[ii] Argentina [409]
    72% (6974%) Not reported Not reported 88% (7994%) Hungary [410]
    Pfizer–BioNTech 92% (9192%) 97% (9797%) 98% (9798%) 97% (9697%) Israel [411]
    92% (8895%) 94% (8798%) 87% (55100%) 97%[ii] Israel [412][403]
    83% (8384%) Not reported Not reported 91% (8992%) Hungary [410]
    Not reported 78% (7779%) 98% (9699%) 96% (9597%) Uruguay [413]
    85% (7496%) Not reported Not reported England [414]
    90% (6897%) Not reported 100%[ii][iii] United States [401]
    Moderna 89% (8790%) Not reported Not reported 94% (9196%) Hungary [410]
    90% (6897%) Not reported 100%[ii][iii] United States [401]
    Sinopharm BIBP Not reported Not reported Not reported 84%[ii] Argentina [409]
    69% (6770%) Not reported Not reported 88% (8689%) Hungary [410]
    50% (4952%) Not reported Not reported 94% (9196%) Peru [415]
    Sputnik V Not reported 98%[ii] Not reported Not reported Russia [416][417]
    Not reported 98%[ii] 100%[ii][iii] 100%[ii][iii] United Arab Emirates [418]
    Not reported Not reported Not reported 93%[ii] Argentina [409]
    86% (8487%) Not reported Not reported 98% (9699%) Hungary [410]
    CoronaVac 54% (5355%) Not reported 73% (7274%) 74% (7375%) Brazil [406]
    Not reported 66% (6567%) 88% (8788%) 86% (8588%) Chile [419][420]
    Not reported 60% (5961%) 91% (8993%) 95% (9396%) Uruguay [413]
    Not reported 94%[ii] 96%[ii] 98%[ii] Indonesia [421][422]
    Not reported 80%[ii] 86%[ii] 95%[ii] Brazil [423][424]
    Sputnik Light 79% (7582%)[ii][iv] Not reported 88% (8092%)[ii][iv] 85% (7591%)[ii][iv] Argentina [425]
    1. ^ Data collected while the Alpha variant was already dominant.[407]
    2. ^ a b c d e f g h i j k l m n o p q r s A confidence interval was not provided, so it is not possible to know the accuracy of this measurement.
    3. ^ a b c d No cases detected in study.
    4. ^ a b c Participants aged 60 to 79.
    ()
    Initial course Booster dose Initial effectiveness by severity of COVID-19 Study location Refs
    Asymptomatic Symptomatic Hospitalization Death
    CoronaVac CoronaVac Not reported 80%[I] 88%[I] Not reported Chile [426]
    Pfizer–BioNTech Not reported 90%[I] 87%[I] Not reported Chile [426]
    Oxford–AstraZeneca Not reported 93%[I] 96%[I] Not reported Chile [426]
    1. ^ a b c d e f A confidence interval was not provided, so it is not possible to know the accuracy of this measurement.


    Critical coverage

    While the most immediate goal of vaccination during a pandemic is to protect individuals from severe disease, a long-term goal is to eventually eradicate it. To do so, the proportion of the population that must be immunized must be greater than the critical vaccination coverage . This value can be calculated from the basic reproduction number and the vaccine effectiveness against transmission as:[427]

    Assuming R0 ≈ 2.87 for SARS-CoV-2,[428] then, for example, the coverage level would have to be greater than 72.4% for a vaccine that is 90% effective against transmission. Using the same relationship, the required effectiveness against transmission can be calculated as:

    Assuming the same R0 ≈ 2.87, the effectiveness against transmission would have to be greater than 86.9% for a realistic coverage level of 75%[348] or 65.2% for an impossible coverage level of 100%. Less effective vaccines would not be able to eradicate the disease.

    Several post-marketing studies have already estimated the effectiveness of some vaccines against asymptomatic infection. Prevention of infection has an impact on slowing transmission (particularly asymptomatic and pre-symptomatic), but the exact extent of this effect is still under investigation.[429]

    Some variants of SARS-CoV-2 are more transmissible, showing an increased effective reproduction number, indicating an increased basic reproduction number. Controlling them requires greater vaccine coverage, greater vaccine effectiveness against transmission, or a combination of both.

    In July 2021, several experts expressed concern that achieving herd immunity may not currently be possible because the Delta variant is transmitted among those immunized with current vaccines.[430] The CDC published data showing that vaccinated people could transmit the Delta strain, something officials believed was not possible with other variants.[431]

    Variants

    World Health Organization video describing how variants proliferate in unvaccinated areas.

    The interplay between the SARS-CoV-2 virus and its human hosts was initially natural but is now being altered by the prompt availability of vaccines.[432] The potential emergence of a SARS-CoV-2 variant that is moderately or fully resistant to the antibody response elicited by the COVID-19 vaccines may necessitate modification of the vaccines.[433] The emergence of vaccine-resistant variants is more likely in a highly vaccinated population with uncontrolled transmission.[434] Trials indicate many vaccines developed for the initial strain have lower efficacy for some variants against symptomatic COVID-19.[435] As of February 2021, the US Food and Drug Administration believed that all FDA authorized vaccines remained effective in protecting against circulating strains of SARS-CoV-2.[433]

    Alpha (lineage B.1.1.7)

    Limited evidence from various preliminary studies reviewed by the WHO indicated retained efficacy/effectiveness against disease from Alpha with the Oxford–AstraZeneca vaccine, Pfizer–BioNTech and Novavax, with no data for other vaccines yet. Relevant to how vaccines can end the pandemic by preventing asymptomatic infection, they have also indicated retained antibody neutralization against Alpha with most of the widely distributed vaccines (Sputnik V, Pfizer–BioNTech, Moderna, CoronaVac, BBIBP-CorV, Covaxin), minimal to moderate reduction with the Oxford–AstraZeneca and no data for other vaccines yet.[436]

    In December 2020, a new SARS‑CoV‑2 variant, the Alpha variant or lineage B.1.1.7, was identified in the UK.[437]

    Early results suggest protection to the variant from the Pfizer-BioNTech and Moderna vaccines.[438][439]

    One study indicated that the Oxford–AstraZeneca COVID-19 vaccine had an efficacy of 42–89% against Alpha, versus 71–91% against other variants.[440][unreliable medical source?]

    Preliminary data from a clinical trial indicates that the Novavax vaccine is ~96% effective for symptoms against the original variant and ~86% against Alpha.[441]

    Beta (lineage B.1.351)

    Limited evidence from various preliminary studies reviewed by the WHO have indicated reduced efficacy/effectiveness against disease from Beta with the Oxford–AstraZeneca vaccine (possibly substantial), Novavax (moderate), Pfizer–BioNTech and Janssen (minimal), with no data for other vaccines yet. Relevant to how vaccines can end the pandemic by preventing asymptomatic infection, they have also indicated possibly reduced antibody neutralization against Beta with most of the widely distributed vaccines (Oxford–AstraZeneca, Sputnik V, Janssen, Pfizer–BioNTech, Moderna, Novavax; minimal to substantial reduction) except CoronaVac and BBIBP-CorV (minimal to modest reduction), with no data for other vaccines yet.[436]

    Moderna has launched a trial of a vaccine to tackle the Beta variant or lineage B.1.351.[442] On 17 February 2021, Pfizer announced neutralization activity was reduced by two-thirds for this variant, while stating that no claims about the efficacy of the vaccine in preventing illness for this variant could yet be made.[443] Decreased neutralizing activity of sera from patients vaccinated with the Moderna and Pfizer-BioNTech vaccines against Beta was later confirmed by several studies.[439][444] On 1 April 2021, an update on a Pfizer/BioNTech South African vaccine trial stated that the vaccine was 100% effective so far (i.e., vaccinated participants saw no cases), with six of nine infections in the placebo control group being the Beta variant.[445]

    In January 2021, Johnson & Johnson, which held trials for its Janssen vaccine in South Africa, reported the level of protection against moderate to severe COVID-19 infection was 72% in the United States and 57% in South Africa.[446]

    On 6 February 2021, the Financial Times reported that provisional trial data from a study undertaken by South Africa's University of the Witwatersrand in conjunction with Oxford University demonstrated reduced efficacy of the Oxford–AstraZeneca COVID-19 vaccine against the variant.[447] The study found that in a sample size of 2,000 the AZD1222 vaccine afforded only "minimal protection" in all but the most severe cases of COVID-19.[448] On 7 February 2021, the Minister for Health for South Africa suspended the planned deployment of about a million doses of the vaccine whilst they examine the data and await advice on how to proceed.[448][449]

    In March 2021, it was reported that the "preliminary efficacy" of the Novavax vaccine (NVX-CoV2373) against Beta for mild, moderate, or severe COVID-19[450] for HIV-negative participants is 51%.

    Gamma (lineage P.1)

    Limited evidence from various preliminary studies reviewed by the WHO have indicated likely retained efficacy/effectiveness against disease from Gamma with CoronaVac and BBIBP-CorV, with no data for other vaccines yet. Relevant to how vaccines can end the pandemic by preventing asymptomatic infection, they have also indicated retained antibody neutralization against Gamma with Oxford–AstraZeneca and CoronaVac (no to minimal reduction) and slightly reduced neutralization with Pfizer–BioNTech and Moderna (minimal to moderate reduction), with no data for other vaccines yet.[436]

    The Gamma variant or lineage P.1 variant (also known as 20J/501Y.V3), initially identified in Brazil, seems to partially escape vaccination with the Pfizer-BioNTech vaccine.[444]

    Delta (lineage B.1.617.2)

    Limited evidence from various preliminary studies reviewed by the WHO have indicated likely retained efficacy/effectiveness against disease from Delta with the Oxford–AstraZeneca vaccine and Pfizer–BioNTech, with no data for other vaccines yet. Relevant to how vaccines can end the pandemic by preventing asymptomatic infection, they have also indicated reduced antibody neutralization against Delta with single-dose Oxford–AstraZeneca (substantial reduction), Pfizer–BioNTech and Covaxin (modest to moderate reduction), with no data for other vaccines yet.[436]

    In October 2020, a new variant was discovered in India, which was named

    Variant of Concern based on an assessment of transmissibility being at least equivalent to the Alpha variant.[459]

    Effect of neutralizing antibodies

    One study found that the

    correlate of immune protection. The relationship between protection and neutralizing activity is nonlinear. A neutralization as low as 3% (95% CI, 113%) of the level of convalescence results in 50% efficacy against severe disease, with 20% (1428%) resulting in 50% efficacy against detectable infection. Protection against infection quickly decays, leaving individuals susceptible to mild infections, while protection against severe disease is largely retained and much more durable. The observed half-life of neutralizing titers was 65 days for mRNA vaccines (Pfizer–BioNTech, Moderna) during the first 4 months, increasing to 108 days over 8 months. Greater initial efficacy against infection likely results in a higher level of protection against serious disease in the long term (beyond 10 years, as seen in other vaccines such as smallpox, measles, mumps, and rubella), although the authors acknowledge that their simulations only consider protection from neutralizing antibodies and ignore other immune protection mechanisms, such as cell-mediated immunity, which may be more durable. This observation also applies to efficacy against variants and is particularly significant for vaccines with a lower initial efficacy; for example, a 5-fold reduction in neutralization would indicate a reduction in initial efficacy from 95% to 77% against a specific variant, and from a lower efficacy of 70% to 32% against that variant. For the Oxford–AstraZeneca vaccine, the observed efficacy is below the predicted 95% confidence interval. It is higher for Sputnik V and the convalescent response, and is within the predicted interval for the other vaccines evaluated (Pfizer–BioNTech, Moderna, Janssen, CoronaVac, Covaxin, Novavax).[460]

    Side effects

    Serious adverse events associated with receipt of new vaccines targeting COVID-19 are of high interest to the public.[461] All vaccines that are administered via intramuscular injection, including COVID-19 vaccines, have side effects related to the mild trauma associated with the procedure and introduction of a foreign substance into the body.[462] These include soreness, redness, rash, and inflammation at the injection site. Other common side effects include fatigue, headache, myalgia (muscle pain), and arthralgia (joint pain) which generally resolve within a few days.[463] One less-frequent side effect (that generally occurs in less than 1 in 1,000 people) is hypersensitivity (allergy) to one or more of the vaccine's ingredients, which in some rare cases may cause anaphylaxis.[464][465][466][467] More serious side effects are very rare because a vaccine would not be approved even for emergency use if it had any known frequent serious adverse effects.[citation needed]

    Reporting

    Most countries operate some form of adverse effects reporting scheme, for example Vaccine Adverse Event Reporting System in the United States and the Yellow Card Scheme[468] in the United Kingdom. In some of these, the data is open to public scrutiny, for example, in the UK, a weekly summary report is published.[469] Concerns have been raised regarding both over-[470] and under-reporting[citation needed] of adverse effects.

    UK

    In the UK, as of 22 September 2021, following the administering of over 48 million first vaccine doses and over 44 million second vaccine doses, there had been 347,447 suspected Covid-19 vaccine related events ('suspected adverse reactions', or 'ADRs') recorded in the Yellow Card system. The majority of these were reports of relatively minor effects (local reactions or temporary flu-like symptoms). Among more serious ADRs, the largest case load came from suspected thrombo-embolic events, of which a total of 439 were recorded, 74 of these fatal.[469] A total of 1,682 suspected fatal ADRs were recorded.[469] For comparison, at this date, the UK had had over 7,500,000 confirmed cases of Covid-19 and over 136,000 people had died within 28 days of a positive test for coronavirus.[469]

    Embolic and thrombotic events

    The Janssen COVID-19 vaccine reported rare

    Pfizer–BioNTech's or Moderna's vaccines.[472] According to reports, the recovery from these rare side effects is quick in most individuals, following adequate treatment and rest.[473]

    Hematologic malignancies

    In a study on the serologic response to COVID-19 messenger RNA vaccines among patients with lymphoma, leukemia and myeloma, it was found that one-quarter of patients did not produce measurable antibodies, varying by blood cancer type. Patients with these conditions need to take precautions to avoid exposure to COVID-19.[474]

    References

    1. ^
      London School of Hygiene & Tropical Medicine
      . 12 July 2021. Retrieved 10 March 2021.
    2. ^ "Approved Vaccines". COVID 19 Vaccine Tracker, McGill University. 12 July 2021.
    3. S2CID 221503034
      .
    4. ^ .
    5. ^ .
    6. ^ a b "Vaccine Safety – Vaccines". US Department of Health and Human Services. Archived from the original on 22 April 2020. Retrieved 13 April 2020.
    7. ^ a b c "The drug development process". U.S. Food and Drug Administration (FDA). 4 January 2018. Archived from the original on 22 February 2020. Retrieved 12 April 2020.
    8. PMID 32554572
      .
    9. ^ "How flu vaccine effectiveness and efficacy are measured". U.S. Centers for Disease Control and Prevention (CDC). 29 January 2016. Archived from the original on 7 May 2020. Retrieved 6 May 2020.
    10. ^ "Principles of epidemiology, Section 8: Concepts of disease occurrence". U.S. Centers for Disease Control and Prevention (CDC). 18 May 2012. Archived from the original on 6 April 2020. Retrieved 6 May 2020.
    11. ^
      PMID 29490655.{{cite journal}}: CS1 maint: unflagged free DOI (link
      )
    12. ^ "Adaptive designs for clinical trials of drugs and biologics: Guidance for industry" (PDF). U.S. Food and Drug Administration (FDA). 1 November 2019. Archived from the original on 13 December 2019. Retrieved 3 April 2020.
    13. ^ "An international randomised trial of candidate vaccines against COVID-19: Outline of Solidarity vaccine trial" (PDF). World Health Organization (WHO). 9 April 2020. Archived (PDF) from the original on 12 May 2020. Retrieved 9 May 2020.
    14. ^ "Pfizer and BioNTech Initiate Rolling Submission of Biologics License Application for U.S. FDA Approval of Their COVID 19 Vaccine". Pfizer (Press release). 7 May 2021. Retrieved 9 June 2021.
    15. ^ "Moderna Announces Initiation of Rolling Submission of Biologics License Application (BLA) with U.S. FDA for the Moderna COVID-19 Vaccine" (Press release). Moderna. 1 June 2021. Retrieved 9 June 2021 – via Business Wire.
    16. London School of Hygiene & Tropical Medicine
      . 12 July 2021. Retrieved 10 March 2021.
    17. ^ "COVID-19 vaccine tracker (Choose vaccines tab, apply filters to view select data)". Milken Institute. 8 December 2020. Retrieved 11 December 2020.
    18. ^ "Draft landscape of COVID 19 candidate vaccines". World Health Organization (WHO). 10 December 2020. Retrieved 11 December 2020.
    19. ^ "Study of Monovalent and Bivalent Recombinant Protein Vaccines Against COVID-19 in Adults 18 Years of Age and Older (VAT00008)". ClinicalTrials.gov. 27 May 2021. NCT04904549. Retrieved 28 May 2021.
    20. ^ "Safety and efficacy of Monovalent and Bivalent Recombinant Protein Vaccines against COVID-19 in Adults 18 Years of Age and Older". ctri.nic.in. Clinical Trials Registry India. CTRI/2021/06/034442. Retrieved 3 August 2021.
    21. ^ "Study of Recombinant Protein Vaccine with Adjuvant against COVID-19 in Adults 18 Years of Age and Older". pactr.samrc.ac.za. Pan African Clinical Trials Registry. Retrieved 24 March 2021.
    22. ^ "Tarjeta del participante del estudio VAT00008: ejemplo central para adaptación a nivel de país" [VAT00008 Study Participant Card: Central Example for Country-Level Adaptation] (PDF). incmnsz.mx. Salvador Zubirán National Institute of Health Sciences and Nutrition. 15 April 2021.
    23. ^ "Study of Recombinant Protein Vaccine Formulations Against COVID-19 in Healthy Adults 18 Years of Age and Older". ClinicalTrials.gov. 3 September 2020. NCT04537208. Retrieved 11 March 2021.
    24. ^ "Study of Recombinant Protein Vaccine With Adjuvant Against COVID-19 in Adults 18 Years of Age and Older (VAT00002)". ClinicalTrials.gov. 21 February 2021. NCT04762680. Retrieved 11 March 2021.
    25. ^ "Sanofi and GSK confirm agreement with European Union to supply up to 300 million doses of adjuvanted COVID-19 vaccine". GSK (Press release). Retrieved 1 April 2021.
    26. ^ https://www.ema.europa.eu/en/human-regulatory/overview/public-health-threats/coronavirus-disease-covid-19/treatments-vaccines/vaccines-covid-19/covid-19-vaccines-under-evaluation
    27. ^ "Sanofi and GSK sign agreements with the Government of Canada to supply up to 72 million doses of adjuvanted COVID-19 vaccine". GSK (Press release). Retrieved 1 April 2021.
    28. ^ "U.S. Likely to Get Sanofi Vaccine First If It Succeeds". Bloomberg.com. 13 May 2020. Retrieved 1 April 2021.
    29. ^ "Coronavirus vaccine: UK signs deal with GSK and Sanofi". BBC News Online. 29 July 2020. Retrieved 1 April 2021.
    30. ^ a b "Status of COVID-19 Vaccines within WHO EUL/PQ evaluation process". World Health Organization (WHO).
    31. ^ "VN starts injection of homegrown COVID-19 vaccine in first-stage human trial". Viet Nam News. 17 December 2020.
    32. ^ "Draft landscape and tracker of COVID-19 candidate vaccines". World Health Organization (WHO). 26 February 2021.
    33. ^ "How much does first Made-in Vietnam COVID-19 vaccine cost?". Voice of Vietnam. 11 December 2020.
    34. ^ "Local Nanocovax vaccine's phase 3 trial to begin next week". vietnamnet.vn. 26 May 2021. Retrieved 28 May 2021.
    35. ^ "Study to Evaluate the Safety, Immunogenicity, and Efficacy of Nanocovax Vaccine Against COVID-19". ClinicalTrials.gov. 11 June 2021. NCT04922788. Retrieved 11 June 2021.
    36. ^ Le C, Thu A (26 February 2021). "Vietnam enters second phase of Covid-19 vaccine trials". VnExpress.
    37. ^ Onishi, Tomoya (15 June 2021). "Vietnam homegrown COVID vaccine heads for full approval by year-end". Nikkei Asia.
    38. ^ "A Study to Evaluate UB-612 COVID-19 Vaccine in Adolescent, Younger and Elderly Adult Volunteers". ClinicalTrials.gov. 26 February 2021. NCT04773067. Retrieved 20 March 2021.
    39. ^ "A Study to Evaluate the Safety, Immunogenicity, and Efficacy of UB-612 COVID-19 Vaccine". ClinicalTrials.gov. 24 December 2020. NCT04683224. Retrieved 20 March 2021.
    40. ^ Liao, George (27 June 2021). "Taiwan's second domestic COVID vaccine's midterm performance in phase II trials inferior to local competitor: experts". Taiwan News. Retrieved 8 July 2021.
    41. ^ "A Study to Evaluate the Safety, Tolerability, and Immunogenicity of UB-612 COVID-19 Vaccine". ClinicalTrials.gov. 11 September 2020. NCT04545749. Retrieved 20 March 2021.
    42. ^ Strong, Matthew (30 June 2021). "Taiwan's United Biomedical applies for COVID vaccine EUA". Taiwan News.
    43. ^ "SCB-2019 as COVID-19 Vaccine". ClinicalTrials.gov. 28 May 2020. NCT04405908. Archived from the original on 11 October 2020. Retrieved 14 July 2020.
    44. ^ "Clover Biopharmaceuticals starts Phase I Covid-19 vaccine trial". Clinical Trials Arena. 20 June 2020. Archived from the original on 11 October 2020. Retrieved 25 June 2020.
    45. ^ "About Us". Clover Biopharmaceuticals. Archived from the original on 11 October 2020. Retrieved 1 August 2020.
    46. ^ "A Controlled Phase 2/3 Study of Adjuvanted Recombinant SARS-CoV-2 Trimeric S-protein Vaccine (SCB-2019) for the Prevention of COVID-19 (SCB-2019)". ClinicalTrials.gov. 17 December 2020. NCT04672395. Retrieved 10 March 2021.
    47. ^ "Clover Biopharmaceuticals and Dynavax Announce First Participants Dosed in SPECTRA, a Global Phase 2/3 Clinical Trial for Adjuvanted S-Trimer COVID-19 Vaccine Candidate". Dynavax. 24 March 2021. Retrieved 7 June 2021.
    48. ^ "A Study of Safety and Immunogenicity of Adjuvanted SARS-CoV-2 (SCB-2019) Vaccine in Adults With Chronic Immune-Mediated Diseases". ClinicalTrials.gov. 19 August 2021. NCT05012787. Retrieved 19 August 2021.
    49. ^ "Immunogenicity and Safety Study of Adjuvanted SARS-CoV-2 (SCB-2019) Vaccine in Adults in China". ClinicalTrials.gov. 8 July 2021. NCT04954131. Retrieved 8 July 2021.
    50. ^ "A Phase 2/3 Study of S-268019". jrct.niph.go.jp. Japan Registry of Clinical Trials. Retrieved 20 October 2021.
    51. ^ "A Phase 3 Study of S-268019 for the Prevention of COVID-19". ClinicalTrials.gov. 28 January 2022. NCT05212948. Retrieved 28 January 2022.
    52. ^ "Safety and Immunogenicity of an Intranasal RSV Vaccine Expressing SARS-CoV-2 Spike Protein (COVID-19 Vaccine) in Adults". jrct.niph.go.jp. Japan Registry of Clinical Trials. Retrieved 21 March 2021.
    53. ^ "A Global Phase III Clinical Trial of Recombinant COVID- 19 Vaccine (Sf9 Cells)". ClinicalTrials.gov. 27 May 2021. NCT04904471. Retrieved 28 May 2021.
    54. ^ "A global phase III clinical trial of recombinant COVID-19 vaccine (Sf9 cells) in adults aged 18 years and older". chictr.org.cn. 12 May 2021. ChiCTR2100046272. Retrieved 12 May 2021.
    55. ^ "A global multicenter, randomized, double-blind, placebo-controlled, phase III clinical trial to evaluate the efficacy, safety, and immunogenicity of recombinant COVID-19 vaccine (Sf9 cells), for the prevention of COVID-19 in adults aged 18 years and older". registry.healthresearch.ph. PHRR210712-003704.
    56. ^ "Phase I Trial of a Recombinant SARS-CoV-2 Vaccine (Sf9 Cell)". ClinicalTrials.gov. 28 August 2020. NCT04530656. Retrieved 20 March 2021.
    57. ^ "A Phase II Clinical Trial of Recombinant Corona Virus Disease-19 (COVID-19) Vaccine (Sf9 Cells)". ClinicalTrials.gov. 23 November 2020. NCT04640402. Retrieved 20 March 2021.
    58. ^ "Phase IIb Clinical Trial of Recombinant Novel Coronavirus Pneumonia (COVID-19) Vaccine (Sf9 Cells)". ClinicalTrials.gov. 22 January 2021. NCT04718467. Retrieved 20 March 2021.
    59. ^ "A Phase III Clinical Trial of Influenza Virus Vector COVID- 19 Vaccine for Intranasal Spray (DelNS1-2019-nCoV-RBD-OPT1)". chictr.org.cn. Chinese Clinical Trial Registry. Retrieved 23 September 2021.
    60. ^ "A Phase I Clinical Trial of Influenza virus Vector COVID-19 Vaccine for intranasal Spray (DelNS1-2019-nCoV-RBD-OPT1)". chictr.org.cn. Chinese Clinical Trial Registry. Retrieved 24 March 2021.
    61. ^ "A Phase II Clinical Trial of Influenza virus Vector COVID-19 Vaccine for intranasal Spray (DelNS1-2019-nCoV-RBD-OPT1)". chictr.org.cn. Chinese Clinical Trial Registry. Retrieved 24 March 2021.
    62. ^ "Entenda ponto a ponto a Versamune, vacina contra a Covid-19 financiada pelo governo federal". G1 Globo. 26 March 2021. Retrieved 19 September 2021.
    63. ^ "Vacina Versamune: o que se sabe sobre imunizante anunciado pelo governo federal". BBC News Brazil. 26 March 2021. Retrieved 19 September 2021.
    64. ^ "Vacina Versamune: o que se sabe sobre imunizante anunciado pelo governo federal". BBC News Brazil. 26 March 2021. Retrieved 19 September 2021.
    65. ^ "Randomized Controlled-trial to Evaluate Safety and Immunogenicity of a Novel Vaccine for Prevention of Covid-19 in Adults Previously Immunized". clinicaltrials.gov. 23 August 2021. NCT05016934. Retrieved 23 August 2021.
    66. ^ "A Phase I clinical trial to evaluate the safety, tolerance and preliminary immunogenicity of different doses of a SARS-CoV-2 mRNA vaccine in population aged 18–59 years and 60 years and above". Chinese Clinical Trial Register. 24 June 2020. ChiCTR2000034112. Archived from the original on 11 October 2020. Retrieved 6 July 2020.
    67. ^ "Company introduction". Walvax Biotechnology. Archived from the original on 11 October 2020. Retrieved 1 August 2020.
    68. ^ "A Phase III Clinical Study to Evaluate the Protective Efficacy, Safety, and Immunogenicity of a SARS-CoV-2 Messenger Ribonucleic Acid (mRNA) Vaccine Candidate in Population Aged 18 Years and Above". chictr.org.cn. Chinese Clinical Trial Registry. Retrieved 17 April 2020.
    69. ^ "A Global, Multi-center, Randomized, Double-Blind, Placebo-controlled, Phase III Clinical Study to Evaluate the Protective Efficacy, Safety and Immunogenicity of SARS-CoV-2 mRNA Vaccine in Population Aged 18 Years and Older". chictr.org.cn. Chinese Clinical Trial Registry. Retrieved 21 July 2021.
    70. ^ "A Phase I/II Clinical Trial to Evaluate the Immunogenicity and Safety of the SARS-CoV-2 mRNA Vaccine in Healthy Population Aged 60 Years and Older". chictr.org.cn. Chinese Clinical Trial Registry. Retrieved 2 August 2021.
    71. ^ "A Phase II clinical trial to evaluate the immunogenicity and safety of different doses of a novel coronavirus pneumonia (COVID-19) mRNA vaccine in population aged 18-59 years". chictr.org.cn. Chinese Clinical Trial Registry. Retrieved 20 March 2021.
    72. ^ "Recombinant SARS-CoV-2 Fusion Protein Vaccine (V-01) Phase III (COVID-19)". ClinicalTrials.gov. 27 October 2021. NCT05096845. Retrieved 27 October 2021.
    73. ^ "评价重组新型冠状病毒融合蛋白疫苗在健康人群免疫原性和安全性随机、双盲、安慰剂对照的II期临床试验". chictr.org.cn. Chinese Clinical Trial Registry. Retrieved 21 April 2021.
    74. ^ "评价重组新型冠状病毒融合蛋白疫苗在健康人群安全性和免疫原性随机、双盲、安慰剂对照的I期临床试验". chictr.org.cn. Chinese Clinical Trial Registry. Retrieved 21 April 2021.
    75. ^ "Arcturus Therapeutics Collaborates with Vingroup to Establish Manufacturing Facility in Vietnam for Arcturus' Investigational mRNA Vaccines for COVID-19". Business Wire. 2 August 2021.
    76. ^ "Arcturus Allows Vietnam's Vingroup to Make Covid Vaccines". Bloomberg. 2 August 2021.
    77. ^ "Vingroup collaborates with Arcturus Therapeutics to establish a manufacturing facility in Vietnam for Arcturus' mRNA Covid-19 vaccine". Yahoo! Finance. 2 August 2021.
    78. ^ "Arcturus to start clinical trial of COVID-19 vaccine in Vietnam". Reuters. 2 August 2021.
    79. ^ "Arcturus Therapeutics lines up Phase 1/2/3 trial for next-generation mRNA COVID-19 vaccine". Biopharma Reporter. 2 August 2021.
    80. ^ "The ARCT-154 Self-Amplifying RNA Vaccine Efficacy Study (ARCT-154-01) (ARCT-154-01)". United States National Library of Medicine. 19 August 2021. NCT05012943. Retrieved 19 August 2021.
    81. ^ "Efficacy, Safety, and Immunogenicity Study of the Recombinant Two-component COVID-19 Vaccine (CHO Cell) (ReCOV)". ClinicalTrials.gov. 20 October 2021. NCT05084989. Retrieved 20 October 2021.
    82. ^ "Safety, Reactogenicity and Immunogenicity Study of ReCOV". ClinicalTrials.gov. 26 March 2021. NCT04818801. Retrieved 2 April 2021.
    83. ^ "A Phase I/II Randomized, Multi-Center, Placebo-Controlled, Dose-Escalation Study to Evaluate the Safety, Immunogenicity and Potential Efficacy of an rVSV-SARS-CoV-2-S Vaccine (IIBR-100) in Adults". ClinicalTrials.gov. 1 November 2020. NCT04608305.
    84. ^ "Phase 2b Dose-confirmatory Trial to Evaluate the Safety, Immunogenicity and Potential Efficacy of an VSV-ΔG SARS-CoV-2 Vaccine (BRILIFE001)". ClinicalTrials.gov. 29 July 2021. NCT04990466. Retrieved 13 September 2021.
    85. ^ "As Israel goes vaccine-wild, will the homegrown version lose its shot?". The Times of Israel. 29 December 2020. Retrieved 1 January 2021.
    86. ^ "Efficacy, safety and immunogenicity of a recombinant protein subunit vaccine (CHO cells) against COVID-19 in adults: an international multicenter, randomized, double-blind, placebo-controlled phase III study". chictr.org.cn. Chinese Clinical Trial Registry. 5 September 2021. ChiCTR2100050849. Retrieved 5 September 2021.
    87. ^ "Phase I Trial of a Recombinant COVID-19 Vaccine (CHO Cell)". ClinicalTrials.gov. United States National Library of Medicine. 19 November 2020. NCT04636333. Retrieved 13 April 2021.
    88. ^ "Immunogenicity and Safety of Recombinant COVID-19 Vaccine (CHO Cells)". ClinicalTrials.gov. United States National Library of Medicine. 24 March 2021. NCT04813562. Retrieved 13 April 2021.
    89. ^ "Safety and Immunogenicity Study of GX-19, a COVID-19 Preventive DNA Vaccine in Healthy Adults". ClinicalTrials.gov. 24 June 2020. NCT04445389. Archived from the original on 11 October 2020. Retrieved 14 July 2020.
    90. ^ "Safety and Immunogenicity Study of GX-19N, a COVID-19 Preventive DNA Vaccine in Healthy Adults". ClinicalTrials.gov. 20 January 2021. NCT04715997. Retrieved 16 March 2021.
    91. ^ "S. Korea's Genexine begins human trial of coronavirus vaccine". Reuters. 19 June 2020. Archived from the original on 11 October 2020. Retrieved 25 June 2020.
    92. ^ "Genexine consortium's Covid-19 vaccine acquires approval for clinical trails in Korea". 11 June 2020. Retrieved 1 August 2020.
    93. ^ "Safety and Immunogenicity of GX-19N, a COVID-19 Preventive DNA Vaccine in Elderly Individuals". ClinicalTrials.gov. 7 June 2021. NCT04915989. Retrieved 8 June 2021.
    94. ^ "Evaluation of Efficacy, Safety and Immunogenicity of GX-19N in Healthy Individuals Who Have Received COVID-19 Vaccines". ClinicalTrials.gov. 5 October 2021. NCT05067946. Retrieved 5 October 2021.
    95. ^ "GRAd-COV2 Vaccine Against COVID-19". ClinicalTrials.gov. 27 August 2020. NCT04528641.
    96. ^ "ReiThera Announces its GRAd-COV2 COVID-19 Vaccine Candidate is Well Tolerated and Induces Clear Immune Responses in Healthy Subjects Aged 18–55 Years". ReiThera Srl. Yahoo! Finance. 24 November 2020. Retrieved 12 January 2021.
    97. ^ "Study of GRAd-COV2 for the Prevention of COVID-19 in Adults (COVITAR)". ClinicalTrials.gov. 10 March 2021. NCT04791423. Retrieved 20 March 2021.
    98. ^ "ReiThera's COVID-19 vaccine candidate enters Phase 2/3 clinical study". ReiThera. 18 March 2021. Retrieved 20 March 2021.
    99. ^ "New ReiThera vaccine safe, response peak at 4 wks". ANSA. 5 January 2021.
    100. ^ "Safety, Tolerability and Immunogenicity of INO-4800 for COVID-19 in Healthy Volunteers". ClinicalTrials.gov. 7 April 2020. NCT04336410. Archived from the original on 11 October 2020. Retrieved 14 July 2020.
    101. ^ "IVI, INOVIO, and KNIH to partner with CEPI in a Phase I/II clinical trial of INOVIO's COVID-19 DNA vaccine in South Korea". International Vaccine Institute. 16 April 2020. Retrieved 23 April 2020.
    102. ^ "Safety, Immunogenicity, and Efficacy of INO-4800 for COVID-19 in Healthy Seronegative Adults at High Risk of SARS-CoV-2 Exposure". ClinicalTrials.gov. 24 November 2020. NCT04642638. Retrieved 12 March 2021.
    103. ^ "Safety, Tolerability and Immunogenicity of INO-4800 Followed by Electroporation in Healthy Volunteers for COVID19". United States National Library of Medincine. Retrieved 12 March 2021.
    104. ^ "A Phase II, Randomized, Double-Blinded, Placebo-Controlled, Dose-Finding Clinical Trial to Evaluate the Safety and Immunogenicity of Different Doses of COVID-19 DNA Vaccine INO-4800 Administered Intradermally Followed by Electroporation in Healthy Adult and Elderly Volunteers". chictr.org.cn. Chinese Clinical Trial Registry. Retrieved 27 March 2021.
    105. ^ "Daiichi Sankyo Initiates Phase 1/2 Clinical Trial for mRNA COVID-19 vaccine in Japan" (PDF) (Press release). Daiichi Sankyo. Retrieved 17 April 2021.
    106. ^ "Daiichi takes mRNA COVID-19 vaccine into clinic as Japanese R&D belatedly fires up". Fierce Biotech. 22 March 2021. Retrieved 12 April 2021.
    107. ^ "既承認SARS-CoV-2 ワクチンの初回接種完了者を対象としたDS-5670a による追加免疫効果を検討する第I/II/III 相、無作為化、実薬対照、評価者盲検試験". jrct.niph.go.jp. 28 December 2021. jRCT2071210106. Retrieved 28 December 2021.
    108. ^ "Study of DS-5670a (COVID-19 Vaccine) in Japanese Healthy Adults and Elderly Subjects". ClinicalTrials.gov. 29 March 2021. NCT04821674. Retrieved 12 April 2021.
    109. ^ "SK Bioscience Submitted Phase 3 IND for COVID-19 Vaccine". SK Bioscience.
    110. ^ "A Phase III Study to Assess the Immunogenicity and Safety of SK SARS-CoV-2 Recombinant Nanoparticle Vaccine Adjuvanted With AS03 (GBP510) in Adults Aged 18 Years and Older". ClinicalTrials.gov. 17 August 2021. NCT05007951. Retrieved 17 August 2021.
    111. ^ "Safety and Immunogenicity Study of SARS-CoV-2 Nanoparticle Vaccine (GBP510) Adjuvanted With or Without AS03 (COVID-19)". ClinicalTrials.gov. 11 February 2021. NCT04750343. Retrieved 22 April 2021.
    112. ^ "Safety and Immunogenicity Study of SARS-CoV-2 Nanoparticle Vaccine (GBP510) Adjuvanted With Aluminum Hydroxide (COVID-19)". ClinicalTrials.gov. 8 February 2021. NCT04742738. Retrieved 22 April 2021.
    113. ^ "Indigenous mRNA vaccine candidate supported by DBT gets Drug Controller nod to initiate Human clinical trials" (Press release). Press Information Bureau. Retrieved 13 January 2021.
    114. ^ "mRNA Vaccines – HGC019". Gennova Biopharmaceuticals Limited. Retrieved 13 January 2021.
    115. ^ "Safety and immunogenicity study of an mRNA based vaccine (HGCO19) for COVID19 in healthy adult participants". ctri.nic.in. Clinical Trials Registry India. Retrieved 9 September 2021.
    116. ^ Raghavan P (15 December 2020). "Pune-based Gennova to begin human trials of its Covid vaccine 'soon'". The Indian Express.
    117. ^ "Safety and immunogenicity study of mRNA based vaccine (HGCO19) against COVID-19 in healthy adult participants". ctri.nic.in. Clinical Trials Registry India. Retrieved 5 June 2021.
    118. ^ "Safety and immunogenicity study of mRNA based vaccine (HGCO19) against COVID-19 in healthy adult participants". Cochrane COVID-19 Study Register. 4 August 2021. Archived from the original on 11 September 2021.
    119. ^ "18歳以上の健康な日本人を対象に、COVID-19に対するワクチン(KD-414)を2回接種した際の免疫原性及び安全性を確認する多施設共同非盲検非対照試験。". jrct.niph.go.jp. Japan Registry of Clinical Trials. Retrieved 22 October 2021.
    120. ^ "Japan's KM Biologics begins clinical trial of COVID-19 vaccine candidate". Reuters. 22 March 2021.
    121. ^ "20歳以上65歳未満の健康成人、及び65歳以上の健康な高齢者を対象に、COVID-19に対するワクチン(KD-414)の安全性及び免疫原性を検討するための、プラセボを対照とする多施設共同二重盲検ランダム化並行群間比較試験". jrct.niph.go.jp. Japan Registry of Clinical Trials. Retrieved 7 May 2021.
    122. ^ "Phase Ⅱ and Ⅲ Trial of a SARS-CoV-2 Vaccine LYB001". ClinicalTrials.gov. 30 November 2021. NCT05137444. Retrieved 30 November 2021.
    123. ^ "A Phase Ⅰ Trial to Evaluate the Safety and Immunogenicity of SARS-CoV-2 Vaccine LYB001". ClinicalTrials.gov. 18 November 2021. NCT05125926. Retrieved 18 November 2021.
    124. ^ "Immunogenicity and safety of a SARS-CoV-2 Vaccine LYB001 against COVID-19 in healthy adults: a randomized, double blinded, placebo-controlled phase II trial and a single-armed, open-label expanded safety phase III trial". chictr.org.cn. Chinese Clinical Trial Registry. Retrieved 15 October 2021.
    125. ^ "Safety, Reactogenicity, and Immunogenicity of a Recombinant SARS-CoV-2 Vaccine LYB001 in healthy adults: a randomized, double blinded, placebo-controlled phase I trial". chictr.org.cn. Chinese Clinical Trial Registry. Retrieved 15 October 2021.
    126. ^ "A study to assess the safety and immunogenicity of Anti-COVID-19 AKS-452 vaccine for SARS-Сov-2 infection in Indian healthy subjects". ctri.nic.in. 11 October 2021. CTRI/2021/10/037269. Retrieved 11 October 2021.
    127. ^ "Anti-COVID19 AKS-452 – ACT Study (ACT)". ClinicalTrials.gov. 23 December 2020. NCT04681092. Retrieved 21 March 2021.
    128. ^ "Study of COVID-19 DNA Vaccine (AG0301-COVID19)". ClinicalTrials.gov. 9 July 2020. NCT04463472. Archived from the original on 11 October 2020. Retrieved 14 July 2020.
    129. ^ "Study of COVID-19 DNA Vaccine (AG0302-COVID19)". ClinicalTrials.gov. 26 August 2020. NCT04527081. Retrieved 11 March 2021.
    130. ^ "About AnGes – Introduction". AnGes, Inc. Archived from the original on 11 October 2020. Retrieved 1 August 2020.
    131. ^ "Phase II / III Study of COVID-19 DNA Vaccine (AG0302-COVID19)". ClinicalTrials.gov. 7 December 2020. NCT04655625. Retrieved 11 March 2021.
    132. ^ "Phase II Clinical Trial of Recombinant SARS-CoV-2 Spike Protein Vaccine (CHO Cell)". ClinicalTrials.gov. 4 August 2021. NCT04990544. Retrieved 4 August 2021.
    133. ^ "Phase I Clinical Trial of Recombinant SARS-CoV-2 Spike Protein Vaccine (CHO Cell)". ClinicalTrials.gov. 4 July 2021. NCT04982068. Retrieved 29 July 2021.
    134. ^ "A Ph 2 Trial With an Oral Tableted COVID-19 Vaccine". ClinicalTrials.gov. 5 October 2021. NCT05067933. Retrieved 5 October 2021.
    135. ^ "Safety and Immunogenicity Trial of an Oral SARS-CoV-2 Vaccine (VXA-CoV2-1) for Prevention of COVID-19 in Healthy Adults". ClinicalTrials.gov. 24 September 2020. NCT04563702. Retrieved 22 March 2021.
    136. ^ "Ph 1b: Safety & Immunogenicity of Ad5 Based Oral Norovirus Vaccine (VXA-NVV-104)". ClinicalTrials.gov. 22 April 2021. NCT04854746. Retrieved 25 May 2021.
    137. ^ a b "Made-in-Canada coronavirus vaccine starts human clinical trials". Canadian Broadcasting Corporation. 26 January 2021.
    138. ^ "PTX-COVID19-B, an mRNA Humoral Vaccine, Intended for Prevention of COVID-19 in a General Population. This Study is Designed to Demonstrate the Safety, Tolerability, and Immunogenicity of PTX-COVID19-B in Comparison to the Pfizer-BioNTech COVID-19 Vaccine". ClinicalTrials.gov. 4 January 2022. NCT05175742. Retrieved 6 January 2022.
    139. ^ "PTX-COVID19-B, an mRNA Humoral Vaccine, is Intended for Prevention of COVID-19 in a General Population. This Study is Designed to Evaluate Safety, Tolerability, and Immunogenicity of PTX-COVID19-B Vaccine in Healthy Seronegative Adults Aged 18-64". ClinicalTrials.gov. 21 February 2021. NCT04765436. Retrieved 22 April 2021.
    140. ^ "Randomized, double-blind, placebo-controlled phase II clinical trial of immunogenicity, immunopersistence, and safety of graded Novel Coronavirus inactivated vaccine (Vero cells) in healthy persons aged 18 years and older". chictr.org.cn. 29 September 2021. ChiCTR2100050024. Retrieved 3 October 2021.
    141. ^ "A randomized, double-blind, placebo-controlled phase I clinical trial to evaluate the safety and immunogenicity of the Novel Coronavirus inactivated vaccine (Vero cells) in healthy individuals 18 years of age and older". chictr.org.cn. 16 August 2021. ChiCTR2100050024. Retrieved 16 August 2021.
    142. ^ "Another Chinese adenovirus vector COVID-19 vaccine ready for human trials". Xinhua. 28 December 2020. Retrieved 27 July 2021.
    143. ^ "A Phase II Clinical Trial of the Recombinant SARS-CoV-2 Vaccine (Chimpanzee Adenoviral Vector)". chictr.org.cn. 2 August 2021. ChiCTR2100049530. Retrieved 2 August 2021.
    144. ^ "Phase I Clinical Trial of the Candidate Recombinant SARS-CoV-2 Vaccine (Chimpanzee Adenoviral Vector)". chictr.org.cn. 23 May 2021. ChiCTR2100046612. Retrieved 23 May 2021.
    145. ^ "INNA-051 intranasal safety and tolerability study". clinicaltrials.gov. 12 November 2021. NCT05118763. Retrieved 12 November 2021.
    146. ^ "INNA-051 intranasal safety and tolerability study". anzctr.org.au. 21 April 2021. ACTRN12621000607875p. Retrieved 20 May 2021.
    147. ^ "A Study to Evaluate the Immunogenicity and Safety of mRNA-1283 COVID-19 Vaccine Boosters". ClinicalTrials.gov. 30 November 2021. NCT05137236. Retrieved 30 November 2021.
    148. ^ "A Study to Evaluate Safety, Reactogenicity, and Immunogenicity of mRNA-1283 and mRNA-1273 Vaccines in Healthy Adults Between 18 Years and 55 Years of Age to Prevent COVID-19". ClinicalTrials.gov. 24 March 2021. NCT04813796. Retrieved 17 August 2021.
    149. ^ "Study of a Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Virus-like Particle (VLP) Vaccine (COVID-19)". ClinicalTrials.gov. 15 July 2021. NCT04962893. Retrieved 15 July 2021.
    150. ^ "Study of a Severe Acute Respiratory Syndrome CoV-2 (SARS-CoV-2) Virus-like Particle (VLP) Vaccine in Healthy Adults (COVID-19)". ClinicalTrials.gov. 26 March 2021. NCT04818281. Retrieved 3 April 2021.
    151. ^ "SARS-CoV-2 Vaccine (COH04S1) Versus Emergency Use Authorization SARS-COV-2 Vaccine for the Treatment of COVID-19 in Patients With Blood Cancer". ClinicalTrials.gov. 26 July 2021. NCT04977024. Retrieved 26 July 2021.
    152. ^ "A Synthetic MVA-based SARS-CoV-2 Vaccine, COH04S1, for the Prevention of COVID-19". ClinicalTrials.gov. 20 November 2020. NCT04639466. Retrieved 21 March 2021.
    153. ^ "Bavarian Nordic reports encouraging preclinical data for COVID-19 vaccine candidate ahead of first-in-human trial". Bavarian Nordic. 8 March 2021. Retrieved 13 April 2021.
    154. ^ "Bavarian Nordic Initiates Phase 2 Clinical Trial of COVID-19 Booster Vaccine". Bavarian Nordic. 23 August 2021. Retrieved 24 August 2021.
    155. ^ "ABNCoV2 Vaccine in SARS-CoV-2 Seronegative and Seropositive Adult Subjects". ClinicalTrials.gov. 14 October 2021. NCT05077267. Retrieved 14 October 2021.
    156. ^ "Safety and Tolerability of ABNCoV2 (COUGH-1)". ClinicalTrials.gov. 9 April 2021. NCT04839146. Retrieved 13 April 2021.
    157. ^ "Clover Announces Positive Preclinical Data for Second-Generation Protein-Based COVID-19 Vaccine Candidate Demonstrating Broad Neutralization Against Variants of Concern". Clover Biopharmaceutical. 18 May 2021. Retrieved 9 July 2021.
    158. ^ "Immunogenicity and Safety of Adjuvanted SCB-2020S Vaccines in Adults". United States National Library of Medicine. 6 July 2021. NCT04950751. Retrieved 6 July 2021.
    159. ^ "The Safety and Efficacy of SCTV01C in Population Aged ≥18 Years Previously Vaccinated With Inactivated COVID-19 Vaccine.Healthy Population Aged ≥18 Years Previously Vaccinated With Adenovirus Vectored or mRNA COVID-19 Vaccine". United States National Library of Medicine. 14 September 2021. NCT05043311. Retrieved 14 September 2021.
    160. ^ "The Safety and Efficacy of SCTV01C in Population Aged ≥18 Years Previously Vaccinated With Inactivated COVID-19 Vaccine.Healthy Population Aged ≥18 Years Previously Vaccinated With Inactivated COVID-19 Vaccine". United States National Library of Medicine. 14 September 2021. NCT05043285. Retrieved 14 September 2021.
    161. ^ "Safety, Tolerability and Immunogenicity of SCTV01C in Healthy Population Aged ≥18 Years Previously Unvaccinated". United States National Library of Medicine. 8 December 2021. NCT05148091. Retrieved 8 December 2021.
    162. ^ "A Phase 1/2 Safety and Immunogenicity Trial of COVID-19 Vaccine COVIVAC". ClinicalTrials.gov. 5 April 2021. NCT04830800. Retrieved 13 April 2021.
    163. ^ "A Live Recombinant Newcastle Disease Virus-vectored COVID-19 Vaccine Phase 1 Study". ClinicalTrials.gov. 25 January 2022. NCT05205746. Retrieved 25 January 2022.
    164. ^ "Assess the Safety and Immunogenicity of NDV-HXP-S Vaccine in Thailand". ClinicalTrials.gov. 21 February 2021. NCT04764422. Retrieved 7 April 2021.
    165. ^ "A Live Recombinant Newcastle Disease Virus-vectored COVID-19 Vaccine Phase 1 Study". ClinicalTrials.gov. 6 January 2022. NCT05181709. Retrieved 6 January 2022.
    166. ^ "Vaccine COVID-19 "made in Vietnam" COVIVAC thử nghiệm giai đoạn 2". VTV. 10 August 2021. Retrieved 12 August 2021.
    167. ^ Zimmer, Carl (5 April 2021). "Researchers Are Hatching a Low-Cost Coronavirus Vaccine". The New York Times. Retrieved 7 April 2021.
    168. ^ "Randomized, double-blind, placebo-controlled phase I clinical trial to evaluate the safety and immunogenicity of mRNACOVID-19 vaccine in healthy susceptible populations aged 18 years and older people". Chinese Clinical Trial Registry (ChiCTR). Retrieved 15 May 2021.
    169. ^ "A Phase I/II Clinical Trial in Healthy People Aged 18 Years and Above". ClinicalTrials.gov. 3 December 2021. NCT05144139. Retrieved 3 December 2021.
    170. ^ "CTI and Arcturus Therapeutics Announce Initiation of Dosing of COVID-19 STARR mRNA Vaccine Candidate, LUNAR-COV19 (ARCT-021) in a Phase 1/2 study". UK BioIndustry Association. 13 August 2020. Archived from the original on 11 October 2020. Retrieved 23 August 2020.
    171. ^ "Ascending Dose Study of Investigational SARS-CoV-2 Vaccine ARCT-021 in Healthy Adult Subjects". Archived from the original on 11 October 2020. Retrieved 23 August 2020.
    172. ^ "A Trial Evaluating the Safety and Effects of an RNA Vaccine ARCT-021 in Healthy Adults". ClinicalTrials.gov. 16 December 2020. NCT04668339. Retrieved 10 March 2021.
    173. ^ "Open Label Extension Study to Assess the Safety and Long-Term Immunogenicity of ARCT-021". ClinicalTrials.gov. 28 January 2021. NCT04728347. Retrieved 13 March 2021.
    174. ^ "Phase I/II of the Safety and Immunogenicity of SARS-CoV-2 Protein Subunit Recombinant Vaccine in Healthy Populations". ClinicalTrials.gov. 5 October 2021. NCT05067894. Retrieved 5 October 2021.
    175. ^ "VBI Vaccines Announces Initiation of Enrollment in Adaptive Phase 1/2 Study of Prophylactic COVID-19 Vaccine Candidate, VBI-2902". VBI Vaccines (Press release). 9 March 2021. Retrieved 22 March 2021.
    176. ^ "Safety, Tolerability, and Immunogenicity of the COVID-19 Vaccine Candidates VBI-2902a and VBI-2905a". ClinicalTrials.gov. 26 February 2021. NCT04773665. Retrieved 8 October 2021.
    177. ^ "Novavax Announces Positive Preclinical Data for Combination Influenza and COVID-19 Vaccine Candidate". Novavax. 10 May 2021.
    178. ^ "Evaluation of the Safety and Immunogenicity of Influenza and COVID-19 Combination Vaccine". ClinicalTrials.gov. 14 July 2021. NCT04961541. Retrieved 26 July 2021.
    179. ^ "Safety, Tolerance and Immunogenicity of EuCorVac-19 for the Prevention of COVID-19 in Healthy Adults". ClinicalTrials.gov. 5 March 2021. NCT04783311. Retrieved 20 March 2021.
    180. ^ Limon, Raul (12 August 2021). "First Spanish Covid-19 vaccine approved for human clinical trial". El Pais. Retrieved 15 August 2021.
    181. ^ "Safety and Immunogenicity Study of Recombinant Protein RBD Candidate Vaccine Against SARS-CoV-2 in Adult Healthy Volunteers (COVID-19)". clinicaltrials.gov. 16 August 2021. NCT05007509. Retrieved 16 August 2021.
    182. ^ "Safety and Immunogenicity of Recombinant Protein RBD Fusion Dimer Vaccine Against the Virus That Cause COVID-19, Known as Severe Acute Respiratoy Syndrome Coronavirus 2 (SARS-CoV-2)". clinicaltrials.gov. 2 December 2021. NCT05142514. Retrieved 2 December 2021.
    183. ^ "Trial registered on ANZCTR". anzctr.org.au. Australian New Zealand Clinical Trials Registry. Retrieved 24 March 2021.
    184. ^ "Phase I-II Trial of Dendritic Cell Vaccine to Prevent COVID-19 in Adults". ClinicalTrials.gov. 13 May 2020. NCT04386252. Retrieved 23 March 2021.
    185. ^ "Dendritic Cell Vaccine to Prevent COVID-19". ClinicalTrials.gov. 28 December 2020. NCT04685603. Retrieved 23 March 2021.
    186. ^ "Safety and Immunogenicity of COVID-eVax, a Candidate Plasmid DNA Vaccine for COVID-19, in Healthy Adult Volunteers". ClinicalTrials.gov. 9 March 2021. NCT04788459. Retrieved 21 March 2021.
    187. ^ a b "Safety and Immunogenicity of an Intranasal SARS-CoV-2 Vaccine (BBV154) for COVID-19". ClinicalTrials.gov. 12 February 2021. NCT04751682. Archived from the original on 24 February 2021.
    188. ^ "Intranasal Vaccine For Covid-19". Bharat Biotech. Retrieved 5 March 2021.
    189. ^ Gaurav, Kunal (13 August 2021). "First nasal vaccine developed by Bharat Biotech gets nod for Phase 2/3 trial". Hindustan Times.
    190. ^ "Intranasal COVID-19 vaccine Phase 2 study in Healthy volunteers". ctri.nic.in. Clinical Trials Registry India. Retrieved 3 September 2021.
    191. ^ "Vaccibody reports promising preclinical data with a second-generation COVID-19 vaccine and announces its infectious disease strategy" (PDF). vaccibody.com. 10 December 2020.
    192. ^ "Vaccibody reports promising preclinical data with a second-generation COVID-19 vaccine and announces its infectious disease strategy" (PDF). vaccibody.com. 10 December 2020.
    193. ^ "Vaccibody to initiate a phase 1/2 trial to evaluate two second-generation SARS CoV-2 virus DNA vaccine candidates to address emerging variants of concern" (PDF). vaccibody.com. 29 June 2021.
    194. ^ "A Phase 1/2, Dose Escalation Study to Determine Safety and Immunogenicity of Two COVID 19 Vaccines VB10.2129 (RBD Candidate) and VB10.2210 (T Cell Candidate) in Healthy Adult Volunteers". ClinicalTrials.gov. 6 October 2021. NCT05069623. Retrieved 6 October 2021.
    195. ^ "ChulaCov19 mRNA Vaccine in Healthy Adults". ClinicalTrials.gov. 28 September 2020. NCT04566276. Retrieved 21 March 2021.
    196. ^ a b "Safety and Immunity of Covid-19 aAPC Vaccine". ClinicalTrials.gov. 9 March 2020. NCT04299724. Archived from the original on 11 October 2020. Retrieved 14 July 2020.
    197. ^ a b "About Us". Shenzhen Genoimmune Medical Institute. Archived from the original on 11 October 2020. Retrieved 1 August 2020.
    198. ^ a b "Immunity and Safety of Covid-19 Synthetic Minigene Vaccine". ClinicalTrials.gov. 19 February 2020. NCT04276896. Archived from the original on 11 October 2020. Retrieved 14 July 2020.
    199. ^ "COVID-19 Vaccination Using a 2nd Generation (E1/E2B/E3-Deleted) Adenoviral Platform in Healthy South African Adults". ClinicalTrials.gov. 14 January 2021. NCT04710303. Retrieved 23 March 2021.
    200. ^ "COVID-19 Oral and Subcutaneous Vaccination Using a 2nd Generation (E1/E2B/E3-Deleted) Adenovirus Platform in Healthy Volunteers in USA". ClinicalTrials.gov. 1 February 2021. NCT04732468. Retrieved 23 March 2021.
    201. ^ "COVID-19 Vaccination Using a 2nd Generation (E1/E2B/E3-Deleted) Adenoviral-COVID-19 in Normal Healthy Volunteers". ClinicalTrials.gov. 19 October 2020. NCT04591717. Retrieved 23 March 2021.
    202. ^ "COVID-19 Subcutaneously and Orally Administered Supplemental Vaccine Boost to Enhance T Cell Protection in Those Who Have Already Received EUA S-Based Vaccines". ClinicalTrials.gov. 14 April 2021. NCT04845191. Retrieved 22 April 2021.
    203. ^ "COVID-19 Supplemental Vaccine Boost to Enhance T Cell Protection in Those Who Have Already Received EUA S-Based Vaccines". ClinicalTrials.gov. 13 April 2021. NCT04843722. Retrieved 22 April 2021.
    204. ^ a b "VIDO COVID-19 vaccine moves to Phase 1 clinical testing". globalnews.ca. 10 February 2021.
    205. ^ "A Clinical Trial of COVAC-2 in Healthy Adults". ClinicalTrials.gov. 8 January 2021. NCT04702178. Retrieved 20 April 2021.
    206. ^ "A Clinical Trial of COVAC-1 in Generally Healthy Adults". ClinicalTrials.gov. 14 December 2021. NCT05155982. Retrieved 14 December 2021.
    207. ^ "Serum Institute starts manufacturing Codagenix's nasal COVID-19 vaccine". mint. 22 September 2020.
    208. ^ "Safety and Immunogenicity of COVI-VAC, a Live Attenuated Vaccine Against COVID-19". ClinicalTrials.gov. 6 November 2020. NCT04619628.
    209. ^ "A Study of the Safety of and Immune Response to Varying Doses of a Vaccine Against COVID-19 in Healthy Adults". ClinicalTrials.gov. 17 February 2021. NCT04758962.
    210. ^ "COVALIA study update: first healthy volunteers dosed in needle-free SARS-CoV2 DNA vaccine phase 1 trial". Bionet Asia. 30 June 2021. Retrieved 19 July 2021.
    211. ^ "The Safety and Immunogenicity of a DNA-based Vaccine (COVIGEN) in Healthy Volunteers (COVALIA)". ClinicalTrials.gov. 8 February 2021. NCT04742842.
    212. ^ "Meissa Announces IND Clearance for Phase 1 Study of Intranasal Live Attenuated Vaccine Candidate for COVID-19". Business Wire. 16 March 2021. Retrieved 20 March 2021.
    213. ^ "Safety and Immunogenicity of an Intranasal RSV Vaccine Expressing SARS-CoV-2 Spike Protein (COVID-19 Vaccine) in Adults". ClinicalTrials.gov. 15 March 2021. NCT04798001. Retrieved 20 March 2021.
    214. ^ "KBP-201 COVID-19 Vaccine Trial in Healthy Volunteers". ClinicalTrials.gov. 16 July 2020. NCT04473690. Retrieved 21 March 2021.
    215. ^ "Safety and Immunogenicity Study of AdCLD-CoV19: A COVID-19 Preventive Vaccine in Healthy Volunteers". ClinicalTrials.gov. 14 December 2020. NCT04666012. Retrieved 23 March 2021.
    216. ^ "A Study to Evaluate the Safety and Immunogenicity of COVID-19 (AdimrSC-2f) Vaccine". ClinicalTrials.gov. 21 August 2020. NCT04522089. Retrieved 21 March 2021.
    217. ^ "Dose-finding Study for AdimrSC-2f Vaccine". ClinicalTrials.gov. 3 November 2021. NCT05104489. Retrieved 3 November 2021.
    218. ^ "GLS-5310 Vaccine for the Prevention of SARS-CoV-2 (COVID-19)". ClinicalTrials.gov. 17 December 2020. NCT04673149. Retrieved 21 March 2021.
    219. ^ "A Clinical Trial of a Plasmid DNA Vaccine for COVID-19 [Covigenix VAX-001] in Adults". ClinicalTrials.gov. 19 October 2020. NCT04591184. Retrieved 21 March 2021.
    220. ^ "Safety and Immunogenicity of a SARS-CoV-2 Vaccine (NBP2001) in Healthy Adults (COVID-19)". ClinicalTrials.gov. 18 February 2021. NCT04760743. Retrieved 21 March 2021.
    221. ^ "Safety and Immunogenicity Trial of Multi-peptide Vaccination to Prevent COVID-19 Infection in Adults (pVAC)". ClinicalTrials.gov. 14 September 2020. NCT04546841. Retrieved 21 March 2021.
    222. ^ "B-pVAC-SARS-CoV-2: Study to Prevent COVID-19 Infection in Adults With Bcell/ Antibody Deficiency (B-pVAC)". ClinicalTrials.gov. 8 July 2020. NCT04954469. Retrieved 8 July 2021.
    223. ^ "Evaluating the Safety, Tolerability and Immunogenicity of bacTRL-Spike Vaccine for Prevention of COVID-19". ClinicalTrials.gov. 6 April 2020. NCT04334980. Retrieved 21 March 2021.
    224. ^ "Chimpanzee Adenovirus and Self-Amplifying mRNA Prime-Boost Prophylactic Vaccines Against SARS-CoV-2 in Healthy Adults". ClinicalTrials.gov. 1 March 2021. NCT04776317. Retrieved 22 March 2021.
    225. ^ "SARS-COV-2-Spike-Ferritin-Nanoparticle (SpFN) Vaccine With ALFQ Adjuvant for Prevention of COVID-19 in Healthy Adults". ClinicalTrials.gov. 5 March 2021. NCT04784767. Retrieved 24 March 2021.
    226. ^ "Safety, Tolerability and Immunogenicity of the Candidate Vaccine MVA-SARS-2-S Against COVID-19". ClinicalTrials.gov. 29 September 2020. NCT04569383. Retrieved 24 March 2021.
    227. ^ "Safety, Tolerability and Immunogenicity of the Candidate Vaccine MVA-SARS-2-ST Against COVID-19 (MVA-SARS-2-ST)". ClinicalTrials.gov. 20 May 2021. NCT04895449. Retrieved 21 May 2021.
    228. ^ "Safety and Immunogenicity of the Inactivated Koçak-19 Inaktif Adjuvanlı COVID-19 Vaccine Compared to Placebo". ClinicalTrials.gov. 8 April 2021. NCT04838080. Retrieved 3 April 2021.
    229. ^ "First-In-Human Study Of Orally Administered CoV2-OGEN1 In Healthy Subjects". ClinicalTrials.gov. 19 May 2021. NCT04893512. Retrieved 26 May 2021.
    230. ^ "OSE Immunotherapeutics Receives Authorization for Phase 1 Clinical Trial of its Multi-Target Multi-Variant COVID-19 Vaccine". BioSpace. 1 April 2021. Retrieved 13 April 2021.
    231. ^ "To Evaluate the Safety, and Immunogenicity of Vaccine Candidate Against COVID-19, in Healthy Adults (COVEPIT 3)". ClinicalTrials.gov. 13 May 2021. NCT04885361. Retrieved 13 May 2021.
    232. ^ "HDT Bio Receives Notice to Proceed from FDA for US Phase 1 Clinical Trial of RNA COVID-19 Vaccine". HDT Bio. 1 July 2021. Retrieved 24 December 2021.
    233. ^ "HDT Bio Partner Quratis Doses First Healthy Volunteers in Phase 1 Trial of HDT Bio's RNA COVID-19 Vaccine in South Korea". HDT Bio. 13 December 2021. Retrieved 24 December 2021.
    234. ^ "Phase 1 Study to Assess Safety, Reactogenicity and Immunogenicity of the HDT-301 Vaccine Against COVID-19". ClinicalTrials.gov. 14 April 2021. NCT04844268. Retrieved 4 August 2021.
    235. ^ "Safety And Immunogenicity Of HDT-301 Targeting A SARS-CoV-2 Variant Spike Protein". ClinicalTrials.gov. 24 November 2021. NCT05132907. Retrieved 24 November 2021.
    236. ^ "A Phase 1, First-In-Human Study of the Investigational COVID-19 Vaccine SC-Ad6-1 in Healthy Volunteers". ClinicalTrials.gov. 9 April 2021. NCT04839042. Retrieved 17 April 2021.
    237. ^ "Study of a Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) Adjuvanted Inactivated Vaccine in Healthy Adults (COVID-19)". ClinicalTrials.gov. 29 April 2021. NCT04866069. Retrieved 30 April 2021.
    238. ^ "Safety and Immunogenicity of EXG-5003". ClinicalTrials.gov. 28 April 2021. NCT04863131. Retrieved 2 May 2021.
    239. ^ "Icosavax Initiates Phase 1/2 Trial of COVID-19 VLP Vaccine Candidate". Icosavax. 8 June 2021.
    240. ^ "A Study to Evaluate the Safety and Immunogenicity of COVID-19 Vaccine (IVX-411) in Healthy Adults". Australian New Zealand Clinical Trials Registry. Retrieved 14 June 2021.
    241. ^ "НАЧАТЫ КЛИНИЧЕСКИЕ ИССЛЕДОВАНИЯ СУБЪЕДИНИЧНОЙ ВАКЦИНЫ ПРОТИВ COVID-19, РАЗРАБОТАННОЙ УЧЁНЫМИ НИИПББ". Biosafty and Biotechnology Journal. 15 June 2021.
    242. ^ "Reactogenicity, Safety and Immunogenicity of QazCoVac-P COVID-19 Vaccine". ClinicalTrials.gov. 18 June 2021. NCT04930003. Retrieved 22 June 2021.
    243. ^ "Safety and Immunogenicity of LNP-nCOV saRNA-02 Vaccine Against SARS-CoV-2, the Causative Agent of COVID-19 (COVAC-Uganda)". ClinicalTrials.gov. 22 June 2021. NCT04934111. Retrieved 22 June 2021.
    244. ^ Rujivanarom, Pratch (6 June 2021). "Local jabs yet to join Covid fight". Bangkok Post. Retrieved 8 July 2021.
    245. ^ "A Study to Evaluate Safety, Tolerability, and Reactogenicity of an RBD-Fc-based Vaccine to Prevent COVID-19". ClinicalTrials.gov. 7 July 2021. NCT04953078. Retrieved 7 July 2021.
    246. ^ "Phase 1 Intranasal Parainfluenza Virus Type 5-SARS CoV-2 S Vaccine in Healthy Adults (CVXGA1-001)". ClinicalTrials.gov. 8 July 2021. NCT04954287. Retrieved 8 July 2021.
    247. ^ "FMBA begins clinical trials of its coronavirus vaccine, press service says". Russian News Agency. 19 July 2021. Retrieved 20 July 2021.
    248. ^ "The Objectives of This Study Are Study the Immunogenicity, Safety and Tolerability of the Coronavirus Vaccine in Healthy Adult Volunteer Aged 18 to 60 Years". ClinicalTrials.gov. 14 December 2021. NCT05156723. Retrieved 14 December 2021.
    249. ^ "Phase I clinical trial to evaluate the safety, tolerability and preliminary immunogenicity of the new coronavirus mRNA vaccine (LVRNA009) in Chinese people aged 18 years and over". chictr.org.cn. 31 July 2021. ChiCTR2100049349. Retrieved 31 July 2021.
    250. ^ "A Trial Evaluating the Safety and Immunogenicity of 3 COVID-19 SARS-CoV-2 RNA Vaccines in Healthy Adults". clinicaltrials.gov. 8 September 2021. NCT05037097. Retrieved 8 September 2021.
    251. ^ "Clinical Study of the Safety and Immunogenicity of a Recombinant Viral Vector AAV5 (Adeno-Associated Virus Type 5 )-RBD (Receptor Binding Domain)-S Vaccine for the Prevention of Coronavirus Infection (COVID-19) (COVER)". clinicaltrials.gov. 8 September 2021. NCT05037188. Retrieved 8 September 2021.
    252. ^ "A study of the safety of EDV nanocells packaged with spike-protein plasmid and glycolipid as a COVID-19 vaccine in healthy volunteers". 27 August 2021. ACTRN12621001159842. Retrieved 17 September 2021.
    253. ^ "COVIDITY". Scancell. Retrieved 17 September 2021.
    254. ^ "A First Time in Human Phase 1 Open-Label Study of the COVIDITY Vaccine Administered by Needle-free Injection". clinicaltrials.gov. 17 September 2021. NCT05047445. Retrieved 17 September 2021.
    255. ^ "Evaluation of the Safety and Immunogenicity of SII Vaccine Constructs Based on the SARS-CoV-2 (COVID-19) Variant in Adults". clinicaltrials.gov. 1 September 2021. NCT05029856. Retrieved 16 September 2021.
    256. ^ Chan-hyuk, Kim (1 September 2021). "Eyegene wins approval for trial of mRNA Covid-19 vaccine". Korea Biomedical Review. Retrieved 7 October 2021.
    257. ^ "아이진, 부작용 줄인 코로나 mRNA 백신 개발한다". 한국경제TV. 23 September 2021. Retrieved 7 October 2021.
    258. ^ "Study to Assess the Safety, Tolerability and Explore the Immunogenicity of EG-COVID in Healthy Adult Volunteers". clinicaltrials.gov. 12 January 2022. NCT05188469. Retrieved 12 January 2022.
    259. ^ "To Evaluate the Safety, Tolerability, and Immunogenicity of a PIKA-Adjuvanted Recombinant SARS-CoV-2 Spike (S) Protein Subunit Vaccine in Healthy Individuals". anzctr.org.au. 15 July 2021. ACTRN12621001009808. Retrieved 2 August 2021.
    260. ^ "Phase 1 Trial of ChAd68 and Ad5 Adenovirus COVID-19 Vaccines Delivered by Aerosol". clinicaltrials.gov. 26 October 2021. NCT05094609. Retrieved 26 October 2021.
    261. ^ "A Study to Evaluate Safety & Immunogenicity of SARS-CoV-2 DNA Vaccine Delivered Intramuscularly Followed by Electroporation for COVID-19". clinicaltrials.gov. 1 November 2021. NCT05102643. Retrieved 1 November 2021.
    262. ^ Jaffe-Hoffman, Maayan (11 June 2021). "Israeli oral COVID-19 vaccine en route to clinical trials". The Jerusalem Post. Retrieved 2 November 2021.
    263. ^ Jaffe-Hoffman, Maayan (22 July 2021). "Israel to become first in world to test Oravax oral COVID-19 vaccine". The Jerusalem Post. Retrieved 2 November 2021.
    264. ^ "Oramed Announces Oravax's Oral COVID-19 Vaccine Has Received South African Approval to Initiate Phase 1 Trial". Cision PR News Wire. 29 October 2021. Retrieved 2 November 2021.
    265. ^ "inno.N, 코로나19 백신 후보물질 임상1상 신청". HK inno.N.
    266. ^ "Study to Evaluate the Safety and Immunogenicity of SARS-CoV-2 Vaccine (IN-B009) in Healthy Adults (COVID-19)". clinicaltrials.gov. 9 November 2021. NCT05113849. Retrieved 9 November 2021.
    267. ^ "Evaluation of Safety and Immunogenicity of a T-Cell Priming Peptide Vaccine Against Coronavirus (naNO-COVID)". clinicaltrials.gov. 9 November 2021. NCT05113862. Retrieved 9 November 2021.
    268. ^ "Russian health ministry approves clinical trials of Betuvax-CoV-2 COVID-19 vaccine". Russian News Agency. 27 September 2021. Retrieved 4 November 2021.
    269. ^ "Private Russian company starts trials for new COVID-19 vaccine - TASS". Reuters. 15 October 2021. Retrieved 4 November 2021.
    270. ^ "Egypt announces clinical trials of its own COVID-19 vaccine". Associated Press News. 15 November 2021. Retrieved 23 November 2021.
    271. ^ "Evaluation of Inactivated Vaccine in Healthy Adults Against Coronavirus Disease of 2019 (COVID-19)". clinicaltrials.gov. 22 November 2021. NCT05128721. Retrieved 22 November 2021.
    272. ^ "自己増殖型mRNAワクチンVLPCOV-01の第1相試験 並行群間、二重盲検、プラセボ対照ヒト初回投与試験(FIH試験)(COVID-19)" [Clinical research implementation plan / research outline disclosure system]. jrct.niph.go.jp. Japan Registry of Clinical Trials. Retrieved 5 October 2021.
    273. ^ "Study of GRT-R910 Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Boost Vaccine in Healthy Volunteers". clinicaltrials.gov. 8 December 2021. NCT05148962. Retrieved 8 December 2021.
    274. ^ "Development of a COVID19 Oral Vaccine Consisting of Bacillus Subtilis Spores Expressing and Displaying the Receptor Binding Domain of Spike Protein of SARS-COV2". chictr.org.cn. 28 November 2021. ChiCTR2100053747. Retrieved 28 November 2021.
    275. ^ "Phase-I Study to Evaluate the Safety and Immunogenicity of a Prophylactic pDNA Vaccine Candidate Against COVID-19 in Healthy Adults". clinicaltrials.gov. 29 December 2021. NCT05171946. Retrieved 29 December 2021.
    276. ^ "신형코로나비루스후보왁찐을 새로 개발". North's State Commission of Science and Technology. Archived from the original on 4 May 2021.
    277. ^ "Dự kiến cuối quý 3-2021, Việt Nam sẽ có vaccine phòng Covid-19 đầu tiên". Nhân Dân. 22 March 2021. Retrieved 25 March 2021.
    278. ^ "INOVIO's Pan-COVID-19 Vaccine Candidate (INO-4802) Induces Broad Immunity Against Major Viral Variants in Preclinical Studies". Inovio Pharmaceutical. 12 May 2021. Retrieved 10 June 2021.
    279. ^ "Bangavax Vaccine: Permission sought for clinical trial". The Daily Star. 18 January 2021.
    280. ^ "Bangladesh joins global COVID-19 vaccine race with Bongavax set for clinical trial". Arab News. 8 January 2021.
    281. ^ "Bangavax first buzzed with hope, then fizzled". bdnews24. 6 May 2021. Retrieved 9 May 2021.
    282. ^ "The vaccine is expected to provide long-lasting protection with a single dose administration with an anticipated safety profile similar to other licensed vaccines for active immunization" (PDF). Indian Immunologicals. 8 April 2020. Retrieved 24 July 2021.
    283. ^ Medeiros, Danielle (31 December 2020). "EpiVax and EpiVax Therapeutics Advance COVID-19 Vaccine Program, EPV-CoV-19". EpiVax.
    284. ^ "Intravacc announces positive pre-clinical data for its SARS-CoV-2 nose spray vaccine". Intravacc. 7 April 2021. Retrieved 5 September 2021.
    285. ^ "Second-Generation COVID-19 Vaccine Candidate, CV2CoV, Demonstrates High Immunogenicity Against Virus Variants in Preclinical Study". CureVac. 13 May 2021.
    286. ^ "Sorrento and Dyadic Announce Binding Term Sheet to License Dyadic's Lead COVID-19 Vaccine Candidate "DYAI-100" and C1 Technology for Protein-Based Coronavirus Vaccines and Therapeutics". Sorrento Therapeutics. 11 August 2021. Retrieved 20 August 2021.
    287. ^ "Sorrento Announces Its Lead Protein-Based COVID-19 Vaccine Candidate – DYAI-100 – Elicits Strong Neutralizing Immune Responses in Vaccinated Animals Against SARS-CoV-2 and Multiple Major Variants of Concern". Sorrento Therapeutics. 19 August 2021. Retrieved 20 August 2021.
    288. ^ "Malaysian mRNA vaccine against Covid-19 under development, says Adham". The Edge. 21 June 2021. Retrieved 22 June 2021.
    289. ^ "COVID-19". CureVac. Retrieved 21 December 2020.
    290. ^ "A Study to Determine the Safety and Efficacy of SARS-CoV-2 mRNA Vaccine CVnCoV in Adults for COVID-19". ClinicalTrials.gov. 3 December 2020. NCT04652102. Retrieved 22 July 2021.
    291. ^ "A Study to Evaluate the Safety and Immunogenicity of Vaccine CVnCoV in Healthy Adults in Germany for COVID-19". ClinicalTrials.gov. 19 December 2020. NCT04674189. Retrieved 23 March 2021.
    292. ^ "A Study to Evaluate the Immunogenicity and Safety of the SARS-CoV-2 mRNA Vaccine CVnCoV in Elderly Adults Compared to Younger Adults for COVID-19". ClinicalTrials.gov. 9 April 2021. NCT04838847. Retrieved 26 April 2021.
    293. ^ "A Study to Evaluate Safety, Reactogenicity and Immunogenicity of the SARS-CoV-2 mRNA Vaccine CVnCoV in Adults With Co-morbidities for COVID-19". ClinicalTrials.gov. 26 April 2021. NCT04860258. Retrieved 26 April 2021.
    294. ^ "COVID-19: A Trial Studying the SARS-CoV-2 mRNA Vaccine CVnCoV to Learn About the Immune Response, the Safety, and the Degree of Typical Vaccination Reactions When CVnCoV is Given at the Same Time as a Flu Vaccine Compared to When the Vaccines Are Separately Given in Adults 60 Years of Age and Older (CV-NCOV-011)". ClinicalTrials.gov. 19 April 2021. NCT04848467. Retrieved 18 June 2021.
    295. ^ "COVID-19: A Phase 2b/3, Randomized, Observer-Blinded, Placebo Controlled, Multicenter Clinical Study Evaluating the Efficacy and Safety of Investigational SARS-CoV-2 mRNA Vaccine CVnCoV in Adults 18 Years of Age and Older". EU Clinical Trials Register. 19 November 2020. 2020-003998-22. Retrieved 19 December 2020.
    296. ^ "A Study to Evaluate the Safety, Reactogenicity and Immunogenicity of Vaccine CVnCoV in Healthy Adults". ClinicalTrials.gov. 26 June 2020. NCT04449276. Archived from the original on 11 October 2020. Retrieved 14 July 2020.
    297. ^ "A Dose-Confirmation Study to Evaluate the Safety, Reactogenicity and Immunogenicity of Vaccine CVnCoV in Healthy Adults for COVID-19". ClinicalTrials.gov. 17 August 2020. NCT04515147. Archived from the original on 23 August 2020. Retrieved 28 August 2020.
    298. ^ "EMA starts rolling review of CureVac's COVID-19 vaccine (CVnCoV)". European Medicines Agency (EMA) (Press release). 1 December 2020. Retrieved 12 February 2021.
    299. Swissinfo
      . 20 April 2021. Retrieved 22 April 2021.
    300. ^ "CORVax12: SARS-CoV-2 Spike (S) Protein Plasmid DNA Vaccine Trial for COVID-19 (SARS-CoV-2) (CORVax12)". ClinicalTrials.gov. 13 November 2020. NCT04627675. Retrieved 21 March 2021.
    301. ^ "Sanofi and Translate Bio initiate Phase 1/2 clinical trial of mRNA COVID-19 vaccine candidate" (Press release). Sanofi. 12 March 2021. Retrieved 20 March 2021.
    302. ^ "Study of mRNA Vaccine Formulation Against COVID-19 in Healthy Adults 18 Years of Age and Older (VAW00001)". ClinicalTrials.gov. 15 March 2021. NCT04798027. Retrieved 20 March 2021.
    303. ^ "Safety and Immunogenicity of AdCOVID in Healthy Adults (COVID-19 Vaccine Study)". ClinicalTrials.gov. 22 December 2020. NCT04679909. Retrieved 22 March 2021.
    304. ^ "Altimmune Announces Update On AdCOVID Phase 1 Clinical Trial". Altimmune. 29 June 2021. Retrieved 1 July 2021.
    305. . ISRCTN17072692.
    306. ^ "Clinical Trial to Evaluate the Safety and Immunogenicity of the COVID-19 Vaccine (COVID-19-101)". ClinicalTrials.gov. 4 August 2020. NCT04497298. Retrieved 23 March 2021.
    307. ^ "A Study on the Safety, Tolerability and Immune Response of SARS-CoV-2 Sclamp (COVID-19) Vaccine in Healthy Adults". ClinicalTrials.gov. 3 August 2020. NCT04495933. Archived from the original on 11 October 2020. Retrieved 4 August 2020.
    308. ^ "UQ-CSL V451 Vaccine". precisionvaccinations.com. Retrieved 11 December 2020.
    309. ^ "Dose Ranging Trial to Assess Safety and Immunogenicity of V590 (COVID-19 Vaccine) in Healthy Adults (V590-001)". 30 September 2020. Retrieved 26 January 2021.
    310. ^ "A Study to Assess Safety, Tolerability, and Immunogenicity of V591 (COVID-19 Vaccine) in Healthy Participants (V591-001)". 4 August 2020. Retrieved 26 January 2021.
    311. ^ "Participant Enrollment Begins for Phase I Trial of IAVI-Merck COVID-19 Vaccine Candidate". IAVI. Retrieved 14 March 2021.
    312. ^ "V591 SARS-CoV-2 Vaccine". www.precisionvaccinations.com. Retrieved 14 March 2021.
    313. ^ "Merck Discontinues Development of SARS-CoV-2/COVID-19 Vaccine Candidates; Continues Development of Two Investigational Therapeutic Candidates". Merck (Press release). 25 January 2021. Retrieved 25 January 2021.
    314. ^ "Joint CDC and FDA Statement on Vaccine Boosters". U.S. Food and Drug Administration (FDA) (Press release). 8 July 2021. Retrieved 9 July 2021. Public Domain This article incorporates text from this source, which is in the public domain.
    315. ^ "Coronavirus (COVID-19) Update: FDA Authorizes Additional Vaccine Dose for Certain Immunocompromised Individuals". U.S. Food and Drug Administration (FDA) (Press release). 12 August 2021. Retrieved 13 August 2021.
    316. ^ "COVID-19 Vaccines for Moderately to Severely Immunocompromised People". Centers for Disease Control and Prevention. 13 August 2021. Retrieved 13 August 2021.
    317. ^ "FDA Authorizes Booster Dose of Pfizer-BioNTech COVID-19 Vaccine for Certain Populations". U.S. Food and Drug Administration (FDA) (Press release). 22 September 2021. Retrieved 23 September 2021.
    318. ^ "Advisory committee recommends many be offered Covid vaccine boosters". Stat News. 23 September 2021. Retrieved 23 September 2021.
    319. ^ "C.D.C. Chief C.D.C. Chief Overrules Agency Panel and Endorses Pfizer Boosters for Frontline Workers". The New York Times. 24 September 2021. Retrieved 24 September 2021.
    320. ^ a b "Coronavirus (COVID-19) Update: FDA Takes Additional Actions on the Use of a Booster Dose for COVID-19 Vaccines". U.S. Food and Drug Administration. 21 October 2021. Retrieved 22 October 2021. Public Domain This article incorporates text from this source, which is in the public domain.
    321. ^ a b "CDC Expands Eligibility for COVID-19 Booster Shots". Centers for Disease Control and Prevention. 21 October 2021. Retrieved 22 October 2021. Public Domain This article incorporates text from this source, which is in the public domain.
    322. S2CID 231946137
      .
    323. ^ "Angela Merkel receives Moderna dose after first AstraZeneca shot". Al Jazeera. 22 June 2021. Retrieved 28 June 2021.
    324. ^ "Getting One Vaccine Is Good. How About Mix-and-Match?". The New York Times. 30 March 2021. Retrieved 30 June 2021.
    325. ^ "About". Com-COV. Retrieved 28 June 2021.
    326. ^
      doi:10.1186/ISRCTN69254139. ISRCTN69254139.{{cite journal}}: CS1 maint: unflagged free DOI (link
      )
    327. .
    328. ^
      doi:10.1186/ISRCTN27841311. ISRCTN27841311. Retrieved 9 July 2021.{{cite journal}}: CS1 maint: unflagged free DOI (link
      )
    329. doi:10.1186/ISRCTN73765130. ISRCTN73765130. {{cite document}}: Cite document requires |publisher= (help); Unknown parameter |access-date= ignored (help); Unknown parameter |url= ignored (help)CS1 maint: unflagged free DOI (link
      )
    330. ^ "Combination of the first component of Sputnik V vaccine (Sputnik Light vaccine) with vaccines by AstraZeneca, Sinopharm and Moderna demonstrates high safety profile during the study in Argentina's Buenos-Aires province" (Press release). Moscow: Russian Direct Investment Fund. 4 August 2021. Retrieved 5 August 2021.
    331. ^ "Study on Sequential Immunization of Recombinant COVID-19 Vaccine (Ad5 Vector) and RBD-based Protein Subunit Vaccine". ClinicalTrials.gov. 6 April 2021. NCT04833101. Retrieved 9 July 2021.
    332. ^ "Vaccination With COMIRNATY in Subjects With a VAXZEVRIA First Dose (CombiVacS)". ClinicalTrials.gov. 27 April 2021. NCT04860739. Retrieved 9 July 2021.
    333. ^ "Mix and Match of the Second COVID-19 Vaccine Dose for Safety and Immunogenicity (MOSAIC)". ClinicalTrials.gov. 20 May 2021. NCT04894435. Retrieved 9 July 2021.
    334. ^ "Compare Immunological Efficacy of a Vaccine Regimen Combining Two Covid19 mRNA Vaccines (Pfizer-BioNTech and Moderna) With That of a Homologous Vaccination of Each Covid19 mRNA Vaccine (ARNCOMBI)". ClinicalTrials.gov. 25 May 2021. NCT04900467. Retrieved 9 July 2021.
    335. ^ "Heterologous Vaccination With an Vaxzevria (ChAdOx1-S) Prime and a Comirnaty (BNT162b2) Boost Compared With Homolog Vaccination With Vaxzervria (Prime/Boost) or Comirnaty (Prime/Boost) (HeVacc)". ClinicalTrials.gov. 28 May 2021. NCT04907331. Retrieved 9 July 2021.
    336. ^ Kuy, Hugo van der (16 June 2021). "A Trial Among HealthCare Workers (HCW) Vaccinated With Janssen Vaccine: the SWITCH Trial (SWITCH)". ClinicalTrials.gov. NCT04927936. Retrieved 9 July 2021.
    337. ^ a b "FDA Briefing Document: Pfizer–BioNTech COVID-19 Vaccine" (PDF). U.S. Food and Drug Administration (FDA). 10 December 2020. Retrieved 1 January 2021.
    338. ^ Zimmer C (20 November 2020). "2 Companies Say Their Vaccines Are 95% Effective. What Does That Mean? You might assume that 95 out of every 100 people vaccinated will be protected from Covid-19. But that's not how the math works". The New York Times. Retrieved 21 November 2020.
    339. ^ "#DoNotSqueezeMyArm: Doctor Sounds Alarm on How to Properly Inject COVID-19 Vaccine".
    340. PMID 33589486
      .
    341. ^ "COVID-19 Vaccine Administration Errors and Deviations" (PDF). CDC.
    342. ^ Branswell H (2 February 2021). "Comparing three Covid-19 vaccines: Pfizer, Moderna, J&J". Stat. Retrieved 28 February 2021.
    343. ^ "Bharat's Intranasal Covid-19 Vaccine Moves Forward". 16 August 2021.
    344. PMID 32433946
      .
    345. ^ "The FDA's cutoff for Covid-19 vaccine effectiveness is 50 percent. What does that mean?". NBCNews.com. Retrieved 8 January 2021.
    346. ^ "EMA sets 50% efficacy goal – with flexibility – for COVID vaccines". Regulatory Affairs Professionals Society (RAPS). Retrieved 8 January 2021.
    347. PMID 32861315
      .
    348. ^ .
    349. ^ "FDA Briefing Document for mRNA 1273". 17 December 2020. Retrieved 18 August 2021.{{cite web}}: CS1 maint: url-status (link)
    350. PMID 32991794
      .
    351. .
    352. ^ Dooling, Kathleen (13 August 2021). "Evidence to Recommendations Framework: Additional doses of mRNA COVID-19 vaccines as part of a primary series for immunocompromised" (PDF). CDC Advisory Board for Immunization Practices.{{cite web}}: CS1 maint: url-status (link)
    353. S2CID 208254350
      .
    354. ^ Dean N, Madewell Z (5 March 2021). "Understanding the spectrum of vaccine efficacy measures". The BMJ Opinion. Retrieved 1 March 2021.
    355. PMID 33617777
      .
    356. .
    357. ^ a b Committee for Medicinal Products for Human Use (19 February 2021). Assessment report: Comirnaty (PDF) (European public assessment report). Corr.1. European Medicines Agency (EMA). COVID-19 Case Definitions; tables 2, 5, 12, 13. EMA/707383/2020. Archived (PDF) from the original on 20 June 2021. Retrieved 23 June 2021.
    358. ^ a b "Pfizer–BioNTech COVID-19 Vaccine – rna ingredient bnt-162b2 injection, suspension". DailyMed. U.S. National Institutes of Health. Retrieved 14 December 2020.
    359. ^ a b c "Janssen COVID-19 Vaccine – ad26.cov2.s injection, suspension". DailyMed. U.S. National Institutes of Health. Retrieved 15 March 2021.
    360. ^ "FDA Briefing Document: Janssen Ad26.COV2.S Vaccine for the Prevention of COVID-19". US Food & Drug Administration (FDA). 26 February 2021. Retrieved 1 April 2021.
    361. ^ a b c "Moderna COVID-19 Vaccine – cx-024414 injection, suspension". DailyMed. U.S. National Institutes of Health. Retrieved 20 December 2020.
    362. PMID 34037666
      .
    363. ^ Interim recommendations for use of the inactivated COVID-19 vaccine BIBP developed by China National Biotec Group (CNBG), Sinopharm (Guidance). World Health Organization. 7 May 2021.
    364. PMID 33545094
      .
    365. ^ "Summary of Clinical Trial Data of Sinovac's COVID-19 Vaccine (CoronaVac)" (Press release). Sinovac Biotech. 3 April 2021. Retrieved 12 April 2021.
    366. SSRN 3822780
      .
    367. ^ Toscano, Cristiana (29 April 2021). "Evidence Assessment: Sinovac/CoronaVac COVID-19 vaccine" (PDF). World Health Organization.
    368. S2CID 235770533
      .
    369. ^ "WHO issues emergency use listing for eighth COVID-19 vaccine" (Press release). World Health Organization. Retrieved 3 November 2021.
    370. PMID 34774196
      .
    371. ^ "Single dose vaccine, Sputnik Light, authorized for use in Russia" (Press release). Russian Direct Investment Fund. 6 May 2021. Retrieved 1 July 2021. The single dose Sputnik Light vaccine demonstrated 79.4% efficacy according to analyzed data taken from 28 days after the injection was administered as part of Russia's mass vaccination program between 5 December 2020 and 15 April 2021.
    372. ^ Peshimam G, Farooq U (8 February 2021). "CanSinoBIO's COVID-19 vaccine 65.7% effective in global trials, Pakistan official says". Reuters. Islamabad. Retrieved 5 March 2021. its single-dose regimen and normal refrigerator storage requirement could make it a favourable option for many countries
    373. PMID 34037666
      .
    374. ^ "El candidato vacunal Abdala mostró una eficacia de un 92,28% en su esquema de tres dosis". BioCubaFarma (Press release). 21 June 2021. Retrieved 1 July 2021.
    375. ^ "How was the efficacy of the Cuban COVID-19 vaccine candidates calculated?". OnCubaNews English. 27 June 2021. Retrieved 28 June 2021.
    376. ^ .
    377. ^ Qahfarkhi, Tahira Nabi Elahi (21 November 2021). "نتایج مطالعات ۶ واکسن ایرانی کرونا ارایه شد". ایرنا (in Persian). Retrieved 23 November 2021.
    378. ^ Jabarpour, Abdul Karim (2 December 2021). "پاستوکووک ۹۶.۵ درصد از بستری و ابتلای شدید به کرونا پیشگیری می‌کند". IRNA (in Persian). Retrieved 9 December 2021.
    379. .
    380. ^ "Novavax Publishes Results of United Kingdom Phase 3 Clinical Trial in New England Journal of Medicine, Demonstrating High Levels of Efficacy of COVID-19 Vaccine". Novavax Inc. (Press release). Retrieved 30 June 2021.
    381. ^ "Novavax COVID-19 Vaccine Demonstrates 90% Overall Efficacy and 100% Protection Against Moderate and Severe Disease in PREVENT-19 Phase 3 Trial". Novavax Inc. (Press release). 14 June 2021. Retrieved 15 June 2021.
    382. ^ "CureVac Final Data from Phase 2b/3 Trial of First-Generation COVID-19 Vaccine Candidate, CVnCoV, Demonstrates Protection in Age Group of 18 to 60". CureVac (Press release). 30 June 2021. Retrieved 1 July 2021.
    383. ^ "Zydus applies to the DCGI for EUA to launch ZyCoV-D, the world's first Plasmid DNA vaccine for COVID-19" (PDF). Cadila Healthcare (Press release). 1 July 2021. Retrieved 1 July 2021.
    384. ^ "EpivacCorona vaccine's immunological efficacy proves to be 79% — newspaper". Russian News Agency. 5 August 2021. Retrieved 22 December 2021.
    385. ^ "China's Zhifei says unit's COVID shot shows 81.76% efficacy in late-stage trial". Reuters. 27 August 2021.
    386. ^ "Clover's COVID-19 Vaccine Candidate Demonstrates 79% Efficacy Against Delta in Global Phase 2/3 SPECTRA Trial Dominated by Variants of Concern and Interest". Clover Biopharmaceutical (Press release). 22 September 2021. Retrieved 11 November 2021.
    387. ^ "Medicago and GSK announce positive Phase 3 efficacy and safety results for adjuvanted plant-based COVID-19 vaccine candidate". Medicago (Press release). 7 December 2021. Retrieved 28 December 2021.
    388. ^ "Sanofi and GSK to seek regulatory authorization for COVID-19 vaccine". Sanofi (Press release). 23 February 2022. Retrieved 25 February 2022.
    389. ^ "Vaccine Effectiveness", Virginia Dept. of Health, 23 August 2021
    390. ^ Holcombe, Madeline; Waldrop, Theresa (11 September 2021). "CDC study: Unvaccinated 11 times more likely to die from Covid-19". CNN. Retrieved 11 September 2021.{{cite web}}: CS1 maint: url-status (link)
    391. S2CID 237547342. Retrieved 10 September 2021.{{cite journal}}: CS1 maint: url-status (link
      )
    392. ^ a b "Vaccine Effectiveness Against Infection May Wane, C.D.C. Studies Find", "New York Times", 19 August 2021
    393. ^ a b c "The Delta Covid Variant's Urgent Message for America:Vaccinate. Do it quickly.", The New Republic, 1 July 2021
    394. ^ "Sustained Effectiveness of Pfizer-BioNTech and Moderna Vaccines Against COVID-19 Associated Hospitalizations Among Adults — United States, March–July 2021", C.D.C., 27 August 2021
    395. ^ "CDC study shows unvaccinated people are 29 times more likely to be hospitalized with Covid", CNBC, 24 August 2021
    396. ^ "Unvaccinated 67 times more likely to die from COVID-19, adjusted data shows", King5 News, 27 August 2021
    397. ^ "CDC: Covid-19 Vaccine Effectiveness Fell From 91% To 66% With Delta Variant", Forbes, 24 August 2021
    398. ^ "Among the unvaccinated, Delta variant more than doubles risk of hospitalization", Los Angeles Times, 28 August 2021
    399. ^ "What is the difference between efficacy and effectiveness?". Gavi, the Vaccine Alliance (GAVI). 18 November 2020. Retrieved 21 April 2021.
    400. ^ Tal A, Cohen E (29 January 2021). "Israel's health data suggests Pfizer and Moderna vaccines may be more effective than we thought". CNN. Retrieved 27 March 2021.
    401. ^
      PMID 33793460. Cite error: The named reference "cdc-effectiveness" was defined multiple times with different content (see the help page
      ).
    402. .
    403. ^ a b "Real-World Evidence Confirms High Effectiveness of Pfizer–BioNTech COVID-19 Vaccine and Profound Public Health Impact of Vaccination One Year After Pandemic Declared". Pfizer. 11 March 2021. Retrieved 1 April 2021. Cite error: The named reference "ISRstudy" was defined multiple times with different content (see the help page).
    404. PMID 33704435
      .
    405. .
    406. ^ .
    407. ^ COVID-19 vaccine surveillance report (week 21) (PDF) (Technical report). Public Health England. 27 May 2021. GOV-8481.
    408. ^ COVID-19 vaccine surveillance report (week 20) (PDF) (Technical report). Public Health England. 20 May 2021. GOV-8401.
    409. ^ a b c "Ministros de Salud de todo el país consensuaron redoblar esfuerzos para completar los esquemas de vacunación en mayores de 40 años" [Health ministers from all over the country agreed to redouble their efforts to complete vaccination schedules in people over 40 years of age] (in Spanish). Government of Argentina. Ministry of Health (Argentina). 1 July 2021. Retrieved 12 July 2021.
    410. ^
      ISSN 1198-743X
      .
    411. .
    412. .
    413. ^ a b "Tercer estudio de efectividad de vacunación anti SARS-CoV-2 en Uruguay al 30 de junio de 2021" [Third study of effectiveness of vaccination against SARS-CoV-2 in Uruguay as of June 30, 2021]. Ministerio de Salud Pública (in Spanish). 3 July 2021. Retrieved 7 July 2021.
    414. PMID 33901423
      .
    415. ^ Silvia-Valencia J, Soto-Becerra P, Escobar-Agreda S, Fernández-Navarro M, Moscoso-Porras M, Solari L, Mayta-Tristan P (22 July 2021). Efectividad de la vacuna BBIBP-CorV para prevenir infección y muerte en personal de salud [Effectiveness of the BBIBP-CorV vaccine to prevent infection and death in health personnel] (Technical report) (in Spanish). Ministry of Health of Peru. Tabla 4, figura 2.
    416. ^ "Russia's Sputnik V vaccine 97.6% effective in real-world study". Reuters. Moscow. 19 April 2021. Retrieved 21 April 2021.
    417. ^ "Sputnik V demonstrates 97.6% efficacy according to analysis of data from 3.8 million vaccinated persons in Russia making it the most efficient COVID-19 vaccine in the world" (Press release). Moscow: Russian Direct Investment Fund. 19 April 2021. Retrieved 21 April 2021.
    418. ^ "Sputnik V has demonstrated 97.8% efficacy against COVID cases and 100% efficacy against severe cases of COVID in UAE" (Press release). Moscow: Russian Direct Investment Fund. 29 June 2021. Retrieved 2 July 2021.
    419. S2CID 235766915
      .
    420. ^ "Reporte COVID-19: Vacuna Coronavac Tiene Un 90,3% De Efectividad Para Prevenir El Ingreso a UCI" [COVID-19 report: CoronaVac vaccine is 90.3% effective in preventing admission to the ICU]. Ministerio de Salud – Gobierno de Chile (in Spanish). 17 May 2021.
    421. ^ Aditya A. "China Sinovac Shot Seen Highly Effective in Real World Study". Bloomberg. Retrieved 15 May 2021.
    422. ^ "Kajian Cepat Kemenkes : Vaksin Sinovac Efektif Cegah Kematian" [Ministry of Health Quick Study: Sinovac Vaccine Effectively Prevents Death]. Sehat Negeriku (in Indonesian). 12 May 2021. Retrieved 15 May 2021.
    423. ^ "Mass vaccination creates healthy oasis in Brazilian city". Reuters. 31 May 2021. Retrieved 2 June 2021.
    424. ^ "Sinovac vaccine restores a Brazilian city to near normal". Associated Press. 1 June 2021. Retrieved 2 June 2021.
    425. PMC 8435263
      .
    426. ^ a b c "Chile realiza primer estudio a nivel mundial sobre uso de dosis de refuerzo en vacunas inactivadas: Aumenta efectividad en prevención y hospitalización por COVID-19" [Chile conducts the first study worldwide on inactivated vaccine boosters: increased effectiveness against disease and hospitalization due to COVID-19] (Press release) (in Spanish). Ministry of Health of Chile. 7 October 2021. Retrieved 11 November 2021.
    427. PMID 21427399
      .
    428. .
    429. ^ "Science Brief: COVID-19 Vaccines and Vaccination". Centers for Disease Control and Prevention. 27 May 2021. Archived from the original on 16 June 2021. Retrieved 17 June 2021. Substantial reductions in SARS-CoV-2 infections (both symptomatic and asymptomatic) will reduce overall levels of disease, and therefore, viral transmission in the United States. However, investigations are ongoing to assess further the impact of COVID-19 vaccination on transmission.
    430. S2CID 236778544
      .
    431. ^ Katella, Kathy (13 August 2021). "5 Things To Know About the Delta Variant". Yale Medicine News. Retrieved 18 August 2021.
    432. PMID 34155413
      .
    433. ^ a b Office of the Commissioner (23 February 2021). "Coronavirus (COVID-19) Update: FDA Issues Policies to Guide Medical Product Developers Addressing Virus Variants". U.S. Food and Drug Administration (FDA). Retrieved 7 March 2021.
    434. PMID 34330988
      .
    435. .
    436. ^ a b c d Weekly epidemiological update on COVID-19 – 8 June 2021 (Situation report). World Health Organization. 8 June 2021. Table 3. Retrieved 14 June 2021.
    437. ^ "Inside the B.1.1.7 Coronavirus Variant". The New York Times. 18 January 2021. Retrieved 29 January 2021.
    438. PMID 33514629
      .
    439. ^ .
    440. .
    441. .
    442. ^ Kuchler H (25 January 2021). "Moderna develops new vaccine to tackle mutant Covid strain". Financial Times. Retrieved 30 January 2021.
    443. PMID 33596352
      .
    444. ^ .
    445. ^ "Pfizer and BioNTech Confirm High Efficacy and No Serious Safety Concerns Through Up to Six Months Following Second Dose in Updated Topline Analysis of Landmark COVID-19 Vaccine Study". Pfizer (Press release). 1 April 2021. Retrieved 2 April 2021.
    446. ^ Cite error: The named reference auto was invoked but never defined (see the help page).
    447. ^ Francis D, Andy B (6 February 2021). "Oxford/AstraZeneca COVID shot less effective against South African variant: study". Reuters. Retrieved 8 February 2021.
    448. ^ a b "Covid: South Africa halts AstraZeneca vaccine rollout over new variant". BBC News Online. 8 February 2021. Retrieved 8 February 2021.
    449. ^ Booth W, Johnson CY (7 February 2021). "South Africa suspends Oxford-AstraZeneca vaccine rollout after researchers report 'minimal' protection against coronavirus variant". The Washington Post. London. Retrieved 8 February 2021. South Africa will suspend use of the coronavirus vaccine being developed by Oxford University and AstraZeneca after researchers found it provided 'minimal protection' against mild to moderate coronavirus infections caused by the new variant first detected in that country.
    450. ^ "A Phase 2A/B, Randomized, Observer-blinded, Placebo-controlled Study to Evaluate the Efficacy, Immunogenicity, and Safety of a SARS-CoV-2 Recombinant Spike Protein Nanoparticle Vaccine (SARS-CoV-2 rS) With Matrix-M1 Adjuvant in South African Adult Subjects Living Without HIV; and Safety and Immunogenicity in Adults Living With HIV". ClinicalTrials.gov. 30 October 2020.
    451. ^ "PANGO lineages". cov-lineages.org. Retrieved 18 April 2021.
    452. ^ Koshy J (8 April 2021). "Coronavirus | Indian 'double mutant' strain named B.1.617". The Hindu.
    453. ^ "India's variant-fuelled second wave coincided with spike in infected flights landing in Canada". Toronto Sun. 10 April 2021. Retrieved 10 April 2021.
    454. PMID 34233096
      .
    455. .
    456. ^ Biswas S (25 March 2021). "'Double mutant': What are the risks of India's new Covid-19 variant". BBC News Online. Retrieved 11 April 2021.
    457. ^ Haseltine WA (12 April 2021). "An Indian SARS-CoV-2 Variant Lands In California. More Danger Ahead?". Forbes. Retrieved 14 April 2021.
    458. ^ "Confirmed cases of COVID-19 variants identified in UK". Public Health England. 15 April 2021. Retrieved 16 April 2021.
    459. ^ "expert reaction to VUI-21APR-02/B.1.617.2 being classified by PHE as a variant of concern". Science Media Centre. 7 May 2021. Retrieved 15 May 2021.
    460. S2CID 234769053
      .
    461. PMID 34185045.{{cite journal}}: CS1 maint: PMC embargo expired (link
      )
    462. ^ Polania Gutierrez JJ, Munakomi S (January 2020). "Intramuscular Injection" (Document). StatPearls. {{cite document}}: Unknown parameter |pmid= ignored (help); Unknown parameter |url= ignored (help)
    463. hdl:10665/339218. WHO/2019-nCoV/vaccines/SAGE_recommendation/mRNA-1273/background/2021.1. {{cite report}}: Unknown parameter |lay-url= ignored (help
      )
    464. ^ "COVID-19 Vaccine Janssen EPAR". European Medicines Agency (EMA). 5 March 2021. Archived from the original on 15 March 2021. Retrieved 16 March 2021. Text was copied from this source which is © European Medicines Agency. Reproduction is authorized provided the source is acknowledged.
    465. ^ "Information about the J&J/Janssen COVID-19 Vaccine". U.S. Centers for Disease Control and Prevention (CDC). 31 March 2021. Archived from the original on 7 April 2021. Retrieved 7 April 2021. Public Domain This article incorporates text from this source, which is in the public domain.
    466. PMID 33444297. Archived (PDF) from the original on 24 January 2021. Retrieved 2 February 2021.{{cite journal}}: CS1 maint: numeric names: authors list (link
      )
    467. ^ "COVID-19 vaccine safety update: Comirnaty" (PDF). European Medicines Agency. 28 January 2021. Archived (PDF) from the original on 2 June 2021. Retrieved 30 January 2021.
    468. ^ About Yellow Card yellowcard.mhra.gov.uk, accessed 3 October 2021
    469. ^ a b c d [https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1022144/Coronavirus_vaccine_-_summary_of_Yellow_Card_reporting_22.09.2021_-_Clean_v2.pdf Coronavirus Vaccine - summary of Yellow Card reporting] 22 September 2021, assets.publishing.service.gov.uk, accessed 3 October 2021
    470. ^ Gabrielle Settles (3 May 2021). "Federal VAERS database is a critical tool for researchers, but a breeding ground for misinformation". PolitiFact.
    471. ^ "Safety of COVID-19 Vaccines". U.S. Centers for Disease Control and Prevention (CDC). 11 February 2020. Retrieved 13 July 2021.
    472. ^ "Clinical Considerations: Myocarditis after mRNA COVID-19 Vaccines". Centers for Disease Control and Prevention (CDC). Retrieved 27 June 2021. Public Domain This article incorporates text from this source, which is in the public domain.
    473. ^ National Center for Immunization and Respiratory Diseases (23 June 2021). "Myocarditis and Pericarditis Following mRNA COVID-19 Vaccination". CDC.gov. Centers for Disease Control and Prevention. Retrieved 2 July 2021.
    474. PMID 34331856
      .