Uridine

Source: Wikipedia, the free encyclopedia.

Uridine
Skeletal formula of uridine
Ball-and-stick model of the uridine molecule
Names
IUPAC name
Uridine[1]
Systematic IUPAC name
1-[(2R,3R,4S,5R)-3,4-Dihydroxy-5-(hydroxymethyl)oxolan-2-yl]pyrimidine-2,4(1H,3H)-dione
Identifiers
3D model (
JSmol
)
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard
100.000.370 Edit this at Wikidata
IUPHAR/BPS
MeSH Uridine
UNII
  • InChI=1S/C9H12N2O6/c12-3-4-6(14)7(15)8(17-4)11-2-1-5(13)10-9(11)16/h1-2,4,6-8,12,14-15H,3H2,(H,10,13,16)/t4-,6-,7-,8-/m1/s1 ☒N
    Key: DRTQHJPVMGBUCF-XVFCMESISA-N ☒N
  • InChI=1/C9H12N2O6/c12-3-4-6(14)7(15)8(17-4)11-2-1-5(13)10-9(11)16/h1-2,4,6-8,12,14-15H,3H2,(H,10,13,16)/t4-,6-,7-,8-/m1/s1
    Key: DRTQHJPVMGBUCF-XVFCMESIBG
  • O=C1NC(=O)N(C=C1)[C@@H]2O[C@H](CO)[C@@H](O)[C@H]2O
Properties
C9H12N2O6
Molar mass 244.20
Appearance solid
Density .99308g/cm3
Melting point 167.2 °C (333.0 °F; 440.3 K)
log P -1.98
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Uridine (

ribonucleic acid
(RNA). Conversely, uridine is found in RNA and not DNA. The remaining three nucleosides may be found in both RNA and DNA. In RNA, they would be represented as A, C and G whereas in DNA they would be represented as dA, dC and dG.

Biosynthesis

Uridine is widely produced in nature as

aspartate.[2]

Dietary sources

Uridine is regarded as a non-essential nutrient, as it is produced by the human body as needed and supplementation is not generally recommended, though it has been explored for specific applications.[3]

Some foods that contain uridine in the form of RNA are listed below. Although claimed that virtually none of the uridine in this form is bioavailable "since – as shown by Handschumacher's Laboratory at Yale School of Medicine in 1981[4] – it is destroyed in the liver and gastrointestinal tract, and no food, when consumed, has ever been reliably shown to elevate blood uridine levels'. This is contradicted by Yamamoto et al.,[5] plasma uridine levels rose 1.8-fold 30 minutes after beer ingestion, suggesting, at the very least, conflicting data. On the other hand, ethanol on its own (which is present in beer) increases uridine levels, which may explain the raise of uridine levels in the study by Yamamoto et al.[6] In infants consuming mother's milk or commercial infant formulas, uridine is present as its monophosphate, UMP,[7] which is both bioavailable[8] and able to enter the circulation from the digestive tract.[citation needed]

  • goat's and sheep's milk and milk products
  • Sugarcane extract[9]
  • Tomatoes (0.5 to 1.0 g uridine per kilogram dry weight)[10]
  • Brewer's yeast (1.7% uridine by dry weight)[11][12]
  • Beer[13]
  • Broccoli[11]
  • Organ meats (liver, pancreas, etc.)[11]

Consumption of RNA-rich foods may lead to high levels of

purines (adenine and guanosine) in blood. High levels of purines are known to increase uric acid production and may aggravate or lead to conditions such as gout.[14]

Harvard researchers report that omega-3 fatty acids and uridine, two substances in foods such as fish, walnuts, molasses, and sugar beets, prevented depression in rats as effectively as antidepressant drugs. "Giving rats a combination of uridine and omega-3 fatty acids produced immediate effects that were indistinguishable from those caused by giving the rats standard antidepressant medications," said lead author of the study William Carlezon, director of McLean's Behavioral Genetics Laboratory.[15][16]

Galactose glycolysis

Uridine plays a role in the

galactose-1-phosphate uridyl transferase
and transfers the UDP to the galactose molecule. The end result is UDP-galactose and glucose-1-phosphate. This process is continued to allow the proper glycolysis of galactose.

See also

References

  1. .
  2. ^ Berg JM, Tymoczko JL, Stryer L. (2002). "Section 25.1In de Novo Synthesis, the Pyrimidine Ring Is Assembled from Bicarbonate, Aspartate, and Glutamine". Biochemistry (5th ed.). W H Freeman.{{cite book}}: CS1 maint: multiple names: authors list (link)
  3. .
  4. .
  5. .
  6. .
  7. .
  8. .
  9. ^ Thebody.com
  10. PMID 15656671. Archived from the original on 2 October 2011.{{cite journal}}: CS1 maint: unfit URL (link
    )
  11. ^ .
  12. .
  13. .
  14. ^ "Gout, Hyperuricemia & Chronic Kidney Disease". The National Kidney Foundation. 24 December 2015. Retrieved 24 November 2017.
  15. ^ "Food ingredients may be as effective as antidepressants". Harvard Gazette. 10 February 2005. Retrieved 9 April 2018.
  16. S2CID 1834258
    .
  17. ^ Stryer, Berg and Tymoczko (2002). "Section 16.1 Glycolysis Is an Energy-Conversion Pathway in Many Organisms". Biochemistry (5th ed.). New York: W H Freeman.