Orthogenesis

This is a good article. Click here for more information.
Source: Wikipedia, the free encyclopedia.

Evolutionary progress as a tree of life. Ernst Haeckel, 1866
inheritance of acquired characteristics), creating a diversity of species and genera. Popular views of Lamarckism only consider an aspect of the adaptive force.[1]

Orthogenesis, also known as orthogenetic evolution, progressive evolution, evolutionary progress, or progressionism, is an

.

The term orthogenesis was introduced by

alternatives to Darwinism were largely abandoned by biologists, but the notion that evolution represents progress is still widely shared; modern supporters include E. O. Wilson and Simon Conway Morris. The evolutionary biologist Ernst Mayr made the term effectively taboo in the journal Nature in 1948, by stating that it implied "some supernatural force".[6][7] The American paleontologist George Gaylord Simpson (1953) attacked orthogenesis, linking it with vitalism by describing it as "the mysterious inner force".[8]
Despite this, many museum displays and textbook illustrations continue to give the impression that evolution is directed.

The philosopher of biology Michael Ruse notes that in popular culture, evolution and progress are synonyms, while the unintentionally misleading image of the March of Progress, from apes to modern humans, has been widely imitated.

Definition

Theodor Eimer

The term orthogenesis (from Ancient Greek: ὀρθός orthós, "straight", and Ancient Greek: γένεσις génesis, "origin") was first used by the biologist Wilhelm Haacke in 1893.[9][10] Theodor Eimer was the first to give the word a definition; he defined orthogenesis as "the general law according to which evolutionary development takes place in a noticeable direction, above all in specialized groups".[11]

In 1922, the zoologist Michael F. Guyer wrote:

[Orthogenesis] has meant many different things to many different people, ranging from a mystical

inner perfecting principle, to merely a general trend in development due to the natural constitutional restrictions of the germinal materials, or to the physical limitations imposed by a narrow environment. In most modern statements of the theory, the idea of continuous and progressive change in one or more characters, due according to some to internal factors, according to others to external causes-evolution in a "straight line" seems to be the central idea.[12]

According to

Susan R. Schrepfer
in 1983:

Orthogenesis meant literally "straight origins", or "straight line evolution". The term varied in meaning from the overtly vitalistic and theological to the mechanical. It ranged from theories of mystical forces to mere descriptions of a general trend in development due to natural limitations of either the germinal material or the environment ... By 1910, however most who subscribed to orthogenesis hypothesized some physical rather than metaphysical determinant of orderly change.[13]

In 1988, Francisco J. Ayala defined progress as "systematic change in a feature belonging to all the members of a sequence in such a way that posterior members of the sequence exhibit an improvement of that feature". He argued that there are two elements in this definition, directional change and improvement according to some standard. Whether a directional change constitutes an improvement is not a scientific question; therefore Ayala suggested that science should focus on the question of whether there is directional change, without regard to whether the change is "improvement".[14] This may be compared to Stephen Jay Gould's suggestion of "replacing the idea of progress with an operational notion of directionality".[15]

In 1989, Peter J. Bowler defined orthogenesis as:

Literally, the term means evolution in a straight line, generally assumed to be evolution that is held to a regular course by forces internal to the organism. Orthogenesis assumes that variation is not random but is directed towards fixed goals. Selection is thus powerless, and the species is carried automatically in the direction marked out by internal factors controlling variation.[2]

In 1996, Michael Ruse defined orthogenesis as "the view that evolution has a kind of momentum of its own that carries organisms along certain tracks".[16]

History

Ramon Lull
's Ladder of Ascent and Descent of the Mind, 1305

Medieval

The possibility of progress is embedded in the mediaeval

Ramon Lull's Ladder of Ascent and Descent of the Mind, 1305, added steps or levels above humans, with orders of angels reaching up to God at the top.[17]

Pre-Darwinian

The orthogenesis hypothesis had a significant following in the 19th century when evolutionary mechanisms such as Lamarckism were being proposed. The French zoologist Jean-Baptiste Lamarck (1744–1829) himself accepted the idea, and it had a central role in his theory of inheritance of acquired characteristics, the hypothesized mechanism of which resembled the "mysterious inner force" of orthogenesis.[1] Orthogenesis was particularly accepted by paleontologists who saw in their fossils a directional change, and in invertebrate paleontology thought there was a gradual and constant directional change. Those who accepted orthogenesis in this way, however, did not necessarily accept that the mechanism that drove orthogenesis was teleological (had a definite goal). Charles Darwin himself rarely used the term "evolution" now so commonly used to describe his theory, because the term was strongly associated with orthogenesis, as had been common usage since at least 1647.[18] His grandfather, the physician and polymath Erasmus Darwin, was both progressionist and vitalist, seeing "the whole cosmos [as] a living thing propelled by an internal vital force" towards "greater perfection".[19] Robert Chambers, in his popular anonymously published 1844 book Vestiges of the Natural History of Creation presented a sweeping narrative account of cosmic transmutation, culminating in the evolution of humanity. Chambers included detailed analysis of the fossil record.[20]

With Darwin

Origin of Species, Karl Ernst von Baer argued for a directed force guiding evolution.[21]

Ruse observed that "Progress (sic, his capitalisation) became essentially a nineteenth-century belief. It gave meaning to life—it offered inspiration—after the collapse [with

Malthus's pessimism and the shock of the French Revolution] of the foundations of the past."[22]
The Baltic German biologist Karl Ernst von Baer (1792–1876) argued for an orthogenetic force in nature, reasoning in a review of Darwin's 1859 On the Origin of Species that "Forces which are not directed—so-called blind forces—can never produce order."[21][23][24] In 1864, the Swiss anatomist
heterogenesis, arguing for wholly separate lines of descent with no common ancestor.[25]
In 1884, the Swiss botanist
idioplasm" transmitted inherited characteristics, dissuaded Mendel from continuing to work on plant genetics.[26] According to Nägeli many evolutionary developments were nonadaptive and variation was internally programmed.[2] Charles Darwin saw this as a serious challenge, replying that "There must be some efficient cause for each slight individual difference", but was unable to provide a specific answer without knowledge of genetics. Further, Darwin was himself somewhat progressionist, believing for example that "Man" was "higher" than the barnacles he studied.[27][28]
Darwin indeed wrote in his 1859

The inhabitants of each successive period in the world's history have beaten their predecessors in the race for life, and are, insofar, higher in the scale of nature; and this may account for that vague yet ill-defined sentiment, felt by many palaeontologists, that organisation on the whole has progressed. [Chapter 10][29]

As all the living forms of life are the lineal descendants of those which lived long before the Silurian epoch, we may feel certain that the ordinary succession by generation has never once been broken, and that no cataclysm has desolated the whole world. Hence we may look with some confidence to a secure future of equally inappreciable length. And as natural selection works solely by and for the good of each being, all corporeal and mental endowments will tend to progress towards perfection. [Chapter 14][29]

Titanotheres evolved into a baroque form, way beyond the adaptive optimum.[31]

In 1898, after studying

teleological approach to orthogenesis, arguing that Eimer's criticism of natural selection was common amongst many evolutionists of his generation; they were searching for alternative mechanisms, as they had come to believe that natural selection could not create new species.[34]

Nineteenth and twentieth centuries

Numerous versions of orthogenesis (see table) have been proposed. Debate centred on whether such theories were scientific, or whether orthogenesis was inherently vitalistic or essentially theological.[35] For example, biologists such as Maynard M. Metcalf (1914), John Merle Coulter (1915), David Starr Jordan (1920) and Charles B. Lipman (1922) claimed evidence for orthogenesis in bacteria, fish populations and plants.[36][37][38][39] In 1950, the German paleontologist Otto Schindewolf argued that variation tends to move in a predetermined direction. He believed this was purely mechanistic, denying any kind of vitalism, but that evolution occurs due to a periodic cycle of evolutionary processes dictated by factors internal to the organism.[40][41] In 1964 George Gaylord Simpson argued that orthogenetic theories such as those promulgated by Du Noüy and Sinnott were essentially theology rather than biology.[35]

Though evolution is not progressive, it does sometimes proceed in a linear way, reinforcing characteristics in certain lineages, but such examples are entirely consistent with the modern neo-Darwinian theory of evolution.

Bernard Rensch.[9]

Recent work has supported the mechanism and existence of mutation biased adaptation, meaning that limited local orthogenesis is now seen as possible.[45][46][47]

Theories

For the columns for other philosophies of evolution (i.e., combined theories including any of Lamarckism, Mutationism, Natural selection, and Vitalism), "yes" means that person definitely supports the theory; "no" means explicit opposition to the theory; a blank means the matter is apparently not discussed, not part of the theory.

Theories of orthogenesis in evolutionary biology[48]
Author Title Field Date Lamarck. Mutat. Nat. Sel. Vital. Features
Lamarck
Inherent progressive tendency
Zoology 1809 yes In his
inheritance of acquired characteristics, was a secondary aspect of this, an adaptive force creating species within a phylum.[1]
)
Baer
Purposeful creation
Embryology 1859 "Forces which are not directed—so-called blind forces—can never produce order."[21]
Kölliker
Heterogenesis
Anatomy 1864 yes Wholly separate lines of descent with no common ancestor[25]
Cope
Law of acceleration
Palaeontology 1868 yes Combined orthogenetic constraints with
Lamarckian use and disuse. "On the Origin of Genera";[49][50][9] See also Cope's rule
(linear increase in size of species)
Nägeli
Inner perfecting principle
Botany 1884 yes no An "
idioplasm" transmitted inherited characteristics; many evolutionary developments nonadaptive; variation internally programmed.[2][9]
Spencer Progressionism
'The Development Hypothesis'
Social theory 1852 Yes[51] Cultural value of progress; "Spencer has no rivals when it comes to open, flagrant connections of social Progress with evolutionary progress."—Michael Ruse[52]
Darwin (concept of higher and lower species), Pangenesis Evolution 1859 yes yes
pass on traits acquired in lifetime.[53][54]
Haacke Orthogenesis Zoology 1893 yes Accompanied by
epimorphism, a tendency to increasing perfection[49][9]
Eimer Orthogenesis Zoology 1898 no On Orthogenesis: And the Impotence of Natural Selection in Species Formation: trends in evolution with no adaptive significance, claimed hard to explain by natural selection.[32][9]
Bergson Elan vital Philosophy 1907 yes Creative Evolution[55]
Przibram
Apogenesis
Embryology 1910s [49]
Plate
Orthoselection
or Old-Darwinism
Zoology 1913 yes yes yes Combined theory[9]
Rosa
Hologenesis
Zoology 1918 yes Hologenesis: a New Theory of Evolution and the Geographical Distribution of Living Beings[56][9]
Whitman Orthogenesis Zoology 1919 no no no Orthogenetic Evolution in Pigeons posthumous[57][58]
Berg
Nomogenesis
Zoology 1926 no yes no Chemical forces direct evolution, leading to humans[59][9][60]
Abel Trägheitsgesetz (the law of inertia) Palaeontology 1928 based on Dollo's law of irreversibility of evolution (which can be explained without orthogenesis as a statistical improbability that a path should be exactly reversed)[9]
Lwoff
Physiological degradation
Physiology 1930s–1940s yes Directed loss of functions in microorganisms[49][61][62]
Beurlen Orthogenesis Palaeontology 1930 no no Start is random metakinesis, generating variety; then palingenesis (in Beurlen's sense, repeating developmental pathway of ancestors) as mechanism for orthogenesis[9]
Victor Jollos [pl] Directed mutation Protozoology, Zoology 1931 yes Combined orthogenesis with Lamarckism (inheriting acquired characteristics after heat shock as dauermodifications, passed on by plasmatic inheritance in the cytoplasm)[9]
Osborn
Aristogenesis
Palaeontology 1934 yes no no [30][63]
Willis
Differentiation (orthogenesis)
Botany 1942 yes a force "working upon some definite law that we do not yet comprehend", compromise between special creation and natural selection, driven by large mutations involving chromosome alterations[64]
Noüy
Telefinalism
Biophysics 1947 yes In book Human Destiny,[65] essentially religious[65]
Vandel [fr] Organicism Zoology 1949 No L'Homme et L'Evolution[49]
Sinnott
Telism
Botany 1950 yes In book Cell and Psyche,[65] essentially religious[35]
Schindewolf
Typostrophism
Palaeontology 1950 yes Basic Questions in Paleontology: Geologic Time, Organic Evolution and Biological Systematics; evolution due to periodic cycle of processes dictated by factors internal to organism.[40][9]
Teilhard de Chardin
Directed additivity
Omega Point
Palaeontology
Mysticism
1959 yes The Phenomenon of Man posthumous; combined orthogenesis with non-material vitalist directive force aiming for a supposed "Omega Point" with creation of consciousness. Noosphere concept from Vladimir Vernadsky.[9] Censured by Gaylord Simpson for nonscientific spiritualistic "doubletalk".[11][66][67]
Croizat
Biological synthesis
Panbiogeography
Botany 1964 mechanistic, caused by
phylogenetic constraints[49][68]
Lima-de-Faria
Autoevolutionism
Physics, Chemistry 1988 No No No No Natural selection is immaterial so cannot work.[69]
Multiple explanations have been offered since the 19th century for how evolution took place, given that many scientists initially had objections to natural selection. Many of these theories led (solid blue arrows) to some form of orthogenesis, with or without invoking divine control (dotted blue arrows) directly or indirectly. For example, evolutionists like Edward Drinker Cope believed in a combination of theistic evolution, Lamarckism, vitalism, and orthogenesis,[70]
represented by a sequence of arrows on the left of the diagram. The development of modern Darwinism is indicated by dashed orange arrows.

The various

palaeontology. Cope did not go so far, seeing that evolution created a branching tree of forms, as Darwin had suggested. Each evolutionary step was however non-random: the direction was determined in advance and had a regular pattern (orthogenesis), and steps were not adaptive but part of a divine plan (theistic evolution). This left unanswered the question of why each step should occur, and Cope switched his theory to accommodate functional adaptation for each change. Still rejecting natural selection as the cause of adaptation, Cope turned to Lamarckism to provide the force guiding evolution. Finally, Cope supposed that Lamarckian use and disuse operated by causing a vitalist growth-force substance, "bathmism", to be concentrated in the areas of the body being most intensively used; in turn, it made these areas develop at the expense of the rest. Cope's complex set of beliefs thus assembled five evolutionary philosophies: recapitulationism, orthogenesis, theistic evolution, Lamarckism, and vitalism.[70] Other palaeontologists and field naturalists continued to hold beliefs combining orthogenesis and Lamarckism until the modern synthesis in the 1930s.[71]

Status

In science

A satirical opinion of Ernst Haeckel's 1874 The modern theory of the descent of man, showing a linear sequence of forms leading up to 'Man'. Illustration by G. Avery for Scientific American, 11 March 1876

The stronger versions of the orthogenetic hypothesis began to lose popularity when it became clear that they were inconsistent with the patterns found by

fossil record, which were non-rectilinear (richly branching) with many complications. The hypothesis was abandoned by the mainstream of evolutionists when no mechanism could be found that would account for the process, and the theory of evolution by natural selection came to prevail.[72]
The historian of biology Edward J. Larson commented that

At theoretical and philosophical levels, Lamarckism and orthogenesis seemed to solve too many problems to be dismissed out of hand—yet biologists could never reliably document them happening in nature or in the laboratory. Support for both concepts evaporated rapidly once a plausible alternative appeared on the scene.[73]

The

methodological naturalism of the sciences.[74][75][76]

Ernst Mayr considered orthogenesis effectively taboo in 1948.[6]

By 1948, the evolutionary biologist

Washington D.C., while Scientific American magazine could illustrate the history of life leading progressively from mammals to dinosaurs to primates and finally man. Ruse noted that at the popular level, progress and evolution are simply synonyms, as they were in the nineteenth century, though confidence in the value of cultural and technological progress has declined.[4]

The discipline of evolutionary developmental biology, however, is open to an expanded concept of heredity that incorporates the physics of self-organization. With its rise in the late 20th-early 21st centuries, ideas of constraint and preferred directions of morphological change have made a reappearance in evolutionary theory.[80]

In popular culture

Evidence as to Man's Place in Nature was intended to compare the skeletons of apes and humans, but unintentionally created a durable meme of supposed "monkey-to-man" progress.[81]

In popular culture, progressionist images of evolution are widespread. The historian Jennifer Tucker, writing in The Boston Globe, notes that Thomas Henry Huxley's 1863 illustration comparing the skeletons of apes and humans "has become an iconic and instantly recognizable visual shorthand for evolution."[81] She calls its history extraordinary, saying that it is "one of the most intriguing, and most misleading, drawings in the modern history of science." Nobody, Tucker observes, supposes that the "monkey-to-man" sequence accurately depicts Darwinian evolution. The Origin of Species had only one illustration, a diagram showing that random events create a process of branching evolution, a view that Tucker notes is broadly acceptable to modern biologists. But Huxley's image recalled the great chain of being, implying with the force of a visual image a "logical, evenly paced progression" leading up to Homo sapiens, a view denounced by Stephen Jay Gould in Wonderful Life.[81]

Man is But a Worm by Edward Linley Sambourne, Punch's Almanack for 1882

Popular perception, however, had seized upon the idea of linear progress.

F. Clark Howell's Early Man, showing a sequence of 14 walking figures ending with modern man, fitted the palaeoanthropological discoveries "not into a branching Darwinian scheme, but into the framework of the original Huxley diagram." Howell ruefully commented that the "powerful and emotional" graphic had overwhelmed his Darwinian text.[81]

One of many versions of the progressionist meme: Astronomy Evolution 2 artwork by Giuseppe Donatiello, 2016

Sliding between meanings

Scientists, Ruse argues, continue to slide easily from one notion of progress to another: even committed Darwinians like Richard Dawkins embed the idea of cultural progress in a theory of cultural units, memes, that act much like genes.[4] Dawkins can speak of "progressive rather than random ... trends in evolution".[82][83] Dawkins and John Krebs deny the "earlier [Darwinian] prejudice"[84] that there is anything "inherently progressive about evolution",[85][84] but, Ruse argues, the feeling of progress comes from evolutionary arms races which remain in Dawkins's words "by far the most satisfactory explanation for the existence of the advanced and complex machinery that animals and plants possess".[86][84]

Ruse concludes his detailed analysis of the idea of Progress, meaning a progressionist philosophy, in evolutionary biology by stating that evolutionary thought came out of that philosophy. Before Darwin, Ruse argues, evolution was just a pseudoscience; Darwin made it respectable, but "only as popular science". "There it remained frozen, for nearly another hundred years",[4] until mathematicians such as Fisher[87] provided "both models and status", enabling evolutionary biologists to construct the modern synthesis of the 1930s and 1940s. That made biology a professional science, at the price of ejecting the notion of progress. That, Ruse argues, was a significant cost to "people [biologists] still firmly committed to Progress" as a philosophy.[4]

Facilitated variation

developmental-genetic toolkit genes controlling wing pattern formation
.

Biology has largely rejected the idea that evolution is guided in any way,

developmental-genetic toolkit studied in evolutionary developmental biology. An example is the development of wing pattern in some species of Heliconius butterfly, which have independently evolved similar patterns. These butterflies are Müllerian mimics of each other, so natural selection is the driving force, but their wing patterns, which arose in separate evolutionary events, are controlled by the same genes.[89]

See also

References

  1. ^ .
  2. ^ a b c d Bowler 1989, pp. 268–270.
  3. .
  4. ^ a b c d e Ruse 1996, pp. 526–539.
  5. PMID 24368232
    .
  6. ^ a b c Ruse 1996, p. 447.
  7. ^ a b Letter from Ernst Mayr to R. H. Flower, Evolution papers, 23 January 1948
  8. ^ Simpson, George Gaylord (1953). Life of the Past: An Introduction to Paleontology. Yale University Press. p. 125.
  9. ^ a b c d e f g h i j k l m n Levit, Georgy S.; Olsson, Lennart (2006). "'Evolution on Rails': Mechanisms and Levels of Orthogenesis" (PDF). Annals of the History and Philosophy of Biology (11): 99–138.
  10. .
  11. ^ .
  12. .
  13. .
  14. .
  15. .
  16. ^ Ruse 1996, p. 261.
  17. ^ a b Ruse 1996, pp. 21–23.
  18. ^
    ISBN 978-0-393-06425-4. Archived from the original on 2019-12-16. Retrieved 2019-08-01. {{cite book}}: |work= ignored (help
    )
  19. ^ Daly, J. P. (4 March 2018). "The Botanic Universe: Generative Nature and Erasmus Darwin's Cosmic Transformism". Republics of Letters. 6: 1–57.
  20. ^ Bowler 1989, p. 134.
  21. ^ .
  22. ^ Ruse 1996, p. 29.
  23. .
  24. .
  25. ^ .
  26. .
  27. ^ .
  28. ^ Ruse 1996, pp. 154–155, 162.
  29. ^ a b c d Darwin, Charles (1859). On the Origin of Species By Means of Natural Selection, or, the Preservation of Favoured Races in the Struggle for Life. Chapters 10, 14.
  30. ^ .
  31. ^ Ruse 1996, pp. 266–267.
  32. ^ .
  33. .
  34. .
  35. ^ a b c Simpson, George Gaylord (1964). Evolutionary Theology: The New Mysticism. Harcourt, Brace & World. pp. 213–233. {{cite book}}: |work= ignored (help)
  36. JSTOR 2455865
    .
  37. ^ John Merle Coulter. (1915). A Suggested Explanation of 'Orthogenesis' in Plants Science, Vol. 42, No. 1094. pp. 859–863.
  38. PMID 17793787
    .
  39. .
  40. ^ .
  41. .
  42. .
  43. .
  44. .
  45. .
  46. .
  47. .
  48. .
  49. ^ a b c d e f g Popov, Igor (7 April 2005). "The Persistence of Heresy: The Concepts of Directed Evolution (Orthogenesis)". Retrieved 15 April 2017.
  50. ^ Barnes, M. Elizabeth (24 July 2014). "Edward Drinker Cope's Law of Acceleration of Growth".
  51. ^ Ruse 1996, p. 189.
  52. ^ Ruse 1996, pp. 181–191.
  53. ^ Ghiselin, Michael T. (September–October 1994). "Nonsense in schoolbooks: 'The Imaginary Lamarck'". The Textbook Letter. The Textbook League. Retrieved 2008-01-23.
  54. .
  55. ^ Bowler 1989, pp. 116–117.
  56. S2CID 85796293
    .
  57. .
  58. .
  59. ^ Ruse 1996, p. 395.
  60. ^ Bowler 1983, p. 157.
  61. ^ Lwoff, A. (1944). L'evolution physiologique. Etude des pertes de fonctions chez les microorganismes. Paris: Hermann. pp. 1–308. L'idée s'imposa que les microorganismes avaient subi des pertes de fonction. Celles-ci apparurent comme la manifestation d'une évolution physiologique, definie comme une degradation, une orthogenese regressive.
  62. S2CID 30286465
    .
  63. .
  64. .
  65. ^ .
  66. .
  67. .
  68. .
  69. .
  70. ^ a b Bowler 1989, pp. 261–262.
  71. ^ Bowler 1989, p. 264.
  72. .
  73. ^ a b Larson 2004, p. 127.
  74. .
  75. .
  76. . With the integration of Mendelian genetics and population genetics into evolutionary theory in the 1930s a new generation of biologists applied mathematical techniques to investigate how changes in the frequency of genes in populations combined with natural selection could produce species change. This demonstrated that Darwinian natural selection was the primary mechanism for evolution and that other models of evolution, such as neo-Lamarckism and orthogenesis, were invalid.
  77. ^ Ruse, Michael (31 March 2010). "Edward O. Wilson on Sociobiology". The Chronicle of Higher Education. Retrieved 4 April 2017.
  78. ^ Ruse 1996, p. 536.
  79. ^ Ruse 1996, p. 530.
  80. .
  81. ^
    Boston Globe
    . Retrieved 29 December 2017.
  82. .
  83. ^ Ruse 1996, p. 466.
  84. ^ a b c Ruse 1996, p. 468.
  85. ^ Dawkins 1986, p. 178.
  86. ^ Dawkins 1986, p. 181.
  87. ^ Ruse 1996, pp. 292–295.
  88. ^ Bowler 1989, p. 270.
  89. PMID 18791259
    .

Sources

Further reading

External links