Charles J. Pedersen

Source: Wikipedia, the free encyclopedia.
Charles John Pedersen
安井 良男
crown ethers

Development of metal deactivators
AwardsNobel Prize in Chemistry (1987)
Scientific career
FieldsOrganic chemistry
InstitutionsDuPont
Crown ether coordinating a potassium ion

Charles John Pedersen (Japanese: 安井 良男, Yasui Yoshio, October 3, 1904 – October 26, 1989) was an American organic chemist best known for discovering crown ethers and describing methods of synthesizing them during his entire 42-year career as a chemist for DuPont at DuPont Experimental Station in Wilmington, Delaware, and at DuPont's Jackson Laboratory in Deepwater, New Jersey.[1] Often associated with Reed McNeil Izatt, Pedersen also shared the Nobel Prize in Chemistry in 1987 with Donald J. Cram and Jean-Marie Lehn. He is the only Nobel Prize laureate born in Korea other than Peace Prize laureate Kim Dae-jung.[2]

Pedersen made countless other discoveries in chemistry, such as discovering and developing metal deactivators.[3] His early investigations also led to the development of a dramatically improved process for manufacturing tetraethyl lead, an important gasoline additive.[4] He also contributed to the development of neoprene.[5]

Early life and education

Born on October 3, 1904, in

silkworms located close to the Unsan County mines, where the couple ultimately met.[7] Although not much is mentioned about his elder brother, who died of a childhood disease before Pedersen was born, he had an older sister named Astrid, who was five years older than him.[7] In Japan, he used the Japanese given name Yoshio (良男), which he spelled using the kanji for "good" and "man".[9] According to Pedersen in a separate autobiographical account of his childhood, he had been born prior to the Russo-Japanese War and because his mother had still been grieving over the then-recent death of his older brother, he did not feel welcomed as a child.[10]

Despite living in what is now South Korea, because Pedersen lived in the vicinity of the American-owned Unsan County mines, which spanned approximately 500 square miles in area,[11] he grew up speaking primarily English.[7]

At around 8 years old, Pedersen was sent by his family to study abroad in Nagasaki, Japan and then later transferred to St. Joseph College in Yokohama, Japan.[12]

After successfully completing his education at St. Joseph College,

America at the University of Dayton in Ohio
.

While spending his undergraduate life in 1922 studying chemical engineering at the University of Dayton in Ohio, Pedersen had been a well balanced student who immersed himself in the sports, academic and social aspects of his college. With a passion for the sport of tennis, Pedersen played on his school's varsity tennis team under Coach Frank Kronauge, a former University of Dayton tennis captain.[13] Playing for all four years of his undergraduate years, Pedersen became captain for both of his junior and senior seasons on the team.[13] Furthermore, Pedersen spent his time as both the vice-president of the Engineers' Club as well as in charge of Literary in the Daytonian Editorial Department[13]. Graduating from the University of Dayton in 1926 with a degree in chemical engineering,[13] he was dedicated for his time at the university as well as the various accomplishments he made while studying as an undergraduate.

Earning a

PhD.[9]

Du Pont

After leaving the

oxidative degradation and stabilization of substrate.[14] Pedersen's papers and work expanded beyond this, however it was a major influence to his eventual Nobel Prize
awarded research.

Retiring at the age of 65, his work resulted in 25 papers and 65 patents, and in 1967, he published two works describing the methods of synthesizing

Donald Cram and Jean-Marie Lehn, whom expanded upon his original discoveries.[16] In the whole process of the Nobel Prize winning, the Dupont Company fully supported Pedersen by providing him a full-time public relations man, and a part-time secretary. DuPont Company also utilized their own corporate aircraft to accompany Pedersen and his family, as he could not travel on commercial aircraft.[17]

Discovery of the crown ethers

At around 1960, Pedersen went back to research in the field of

absorption curve initially showed no changes, it was observed to have shifted to higher absorption readings if one or more of the hydroxy groups were unpaired.[19] Basing further research on this observation, Pedersen then dipped the unknown product in methanol and sodium hydroxide. Although the solution was not soluble in methanol, it became alkaline when in contact with the sodium hydroxide.[16]

Due to not being

molecular-weight, the unknown molecule was then coined as dibenzo-18-crown-6, the first of the aromatic crown compounds discovered.[19]

Associations with other chemists

Reed M. Izatt

In 1968

Izatt believing this too shares Pedersen's message.[20]

Donald J. Cram

Cram shared the 1987 Nobel Prize in Chemistry with Pedersen but expanding on Pedersen's monumental discovery in macrocyclic chemistry of crown ethers.[8] Pedersen's work was in two-dimensional structures but Cram was able to synthesize similar molecules in three-dimensional space. Cram's synthesis of these three-dimensional molecules provided large gains in the production of enzymes made in labs as these structures have selectivity based on complementary structures.[21]

Jean-Marie Lehn

Lehn was the other scientist who shared the Nobel Prize in Chemistry with Pedersen and was fundamental in starting the field of Supramolecular chemistry. Lehn's work specifically identified in his recognition for the Nobel Prize was in his work on cryptands.[14]

Miscellaneous research

Although minimal research has been conducted on this

metal ion.[22]

Personal life

Pedersen was married to Susan J. Ault in 1947

myeloma in 1983, and though he was becoming increasingly frail, he traveled to Stockholm to accept the Nobel Prize in late 1987.[19] Shortly thereafter, he was awarded a medal for excellence by the DuPont Research Fellows. He died on 26 October 1989 in Salem, New Jersey.[23]

Legacy

Following Pedersen's breakthrough in realizing his accidental product and structure of

Nobel Prize Winners, which were produced by connecting molecules to various molecular rings.[20]

Publications

See also

  • List of Japanese Nobel laureates

References

  1. ^ "The Nobel Prize in Chemistry 1987". NobelPrize.org. Retrieved 2023-11-06.
  2. ^ "DJ와 또 한 명 … 노벨위원회엔 '한국 출생 수상자' 2명 기록 [DJ and another ... Nobel committee's record of two Korean-born winners]". Joins.com. October 12, 2014. Archived from the original on March 4, 2016.
  3. ISSN 1365-3075
    .
  4. ^ "Collection: Charles J. Pedersen papers | Hagley Museum and Library Archives". findingaids.hagley.org. Retrieved 2023-11-08.
  5. ISSN 0190-8286
    . Retrieved 2023-11-06.
  6. ^ "Charles J. Pedersen | American chemist". Encyclopedia Britannica. Retrieved 2019-05-28.
  7. ^ a b c d e f Pedersen, Charles (1987). "Charles J. Pedersen Biographical". The Nobel Prize.[permanent dead link]
  8. ^ a b TKTK. "Gold divers on the North Korean border". Reuters. Retrieved 2019-05-28.
  9. ^ a b "Charles J. Pedersen – Biographical". The Nobel Foundation.
  10. ^ Malmstrom, Bo (1992). Chemistry, 1981–1990. World Scientific. p. 496.
  11. JSTOR 3636264
    .
  12. ^ . Retrieved 2019-05-28.
  13. ^ a b c d e "Daytonian 1929". University Yearbooks.
  14. ^
    PMID 17774576
    .
  15. ^ Pedersen, Charles (1988). "Macrocyclic Polyethers:Dibenzo-18-Crown-6 Polyether and Dicyclohexyl-18-Crown-6 Polyether". Organic Syntheses. 6: 395.
  16. ^ .
  17. ^ "Our Trip to Sweden". 2004-10-14. Archived from the original on 2004-10-14. Retrieved 2023-04-12.
  18. ^ .
  19. ^ .
  20. ^ .
  21. ^ "Donald J. Cram – Facts". The Nobel Prize.
  22. .
  23. ^ "The Benner, Cleaveland and Related Families – Obituary of Charles Pedersen". rgcle.com. Archived from the original on February 8, 2011. Retrieved November 7, 2010.

External links