Willard Libby

This is a good article. Click here for more information.
Source: Wikipedia, the free encyclopedia.

Willard Libby
PhD)
Known forRadiocarbon dating
Spouses
Leonor Hickey
(m. 1940; div. 1966)
(m. 1966)
Children2
Awards
Scientific career
Fields
Radioactivity
Institutions
Thesis Radioactivity of ordinary elements, especially samarium and neodymium: method of detection  (1933)
Doctoral advisorWendell Mitchell Latimer
Doctoral students

Willard Frank Libby (December 17, 1908 – September 8, 1980) was an American

palaeontology. For his contributions to the team that developed this process, Libby was awarded the Nobel Prize in Chemistry
in 1960.

A 1931 chemistry graduate of the

uranium enrichment
.

After the war, Libby accepted a professorship at the

nuclear testing
.

Libby resigned from the AEC in 1959 to become professor of chemistry at University of California, Los Angeles (UCLA), a position he held until his retirement in 1976. In 1962, he became the director of the University of California statewide Institute of Geophysics and Planetary Physics (IGPP). He started the first Environmental Engineering program at UCLA in 1972, and as a member of the California Air Resources Board, he worked to develop and improve California's air pollution standards.

Early life and career

Willard Frank Libby was born in Parachute, Colorado, on December 17, 1908, the son of farmers Ora Edward Libby and his wife Eva May (née Rivers).[1] He had two brothers, Elmer and Raymond, and two sisters, Eva and Evelyn.[2] Libby began his education in a two-room Colorado schoolhouse.[3] When he was five, Libby's parents moved to Santa Rosa, California.[4] He attended Analy High School, in Sebastopol, from which he graduated in 1926.[5] Libby, who grew to be 6 feet 2 inches (188 cm) tall, played tackle on the high school football team.[6]

In 1927 he entered the University of California, Berkeley, where he received his

PhD in 1933,[1] writing his doctoral thesis on the "Radioactivity of ordinary elements, especially samarium and neodymium: method of detection"[7] under the supervision of Wendell Mitchell Latimer.[8] Independently of the work of George de Hevesy and Max Pahl, he discovered that the natural long-lived isotopes of samarium primarily decay by emission of alpha particles.[9]

Libby was appointed Instructor in the department of chemistry at the University of California, Berkeley, in 1933.[1] He became an assistant professor of chemistry there in 1938.[10] He spent the 1930s building sensitive Geiger counters to measure weak natural and artificial radioactivity. [9] He joined Berkeley's chapter of Alpha Chi Sigma in 1941.[11] That year he was awarded a Guggenheim Fellowship,[10] and elected to work at Princeton University.[6]

Manhattan Project

On December 8, 1941, the day after the

atomic bombs,[1][6] at what became its Substitute Alloy Materials (SAM) Laboratories.[12] During his time in the New York City area, Libby was a resident of Leonia, New Jersey.[13]

Over the next three years, Libby worked on the

fissile material, and the fissile uranium-235 made up only 0.7 percent of natural uranium. The SAM Laboratories therefore had to find a way of separating kilograms of it from the more abundant uranium-238. Gaseous diffusion worked on the principle that a lighter gas diffuses through a barrier faster than a heavier one at a rate inversely proportional to its molecular weight. But the only known gas containing uranium was the highly corrosive uranium hexafluoride, and a suitable barrier was hard to find.[14]

Through 1942, Libby and his team studied different barriers and the means to protect them from corrosion from the uranium hexafluoride.[15] The most promising type was a barrier made of powdered nickel developed by Edward O. Norris of the Jelliff Manufacturing Corporation and Edward Adler from the City College of New York, which became known as the "Norris-Adler" barrier by late 1942.[16]

In addition to developing a suitable barrier, the SAM Laboratories also had to assist in the design of a gaseous separation plant, which became known as

Kellex to produce a workable design for a pilot plant.[17] Libby conducted a series of tests that indicated that the Norris-Adler barrier would work, and he remained confident that with an all-out effort, the remaining problems with it could be solved. Although doubts remained, construction work began on the K-25 full-scale production plant in September 1943.[18]

As 1943 gave way to 1944, many problems remained. Tests began on the machinery at K-25 in April 1944 without a barrier. Attention turned to a new process developed by Kellex. Finally, in July 1944, Kellex barriers began to be installed in K-25.[19] K-25 commenced operation in February 1945, and as cascade after cascade came online, the quality of the product increased. By April 1945, K-25 had attained a 1.1% enrichment.[20] Uranium partially enriched in K-25 was fed into the calutrons at Y-12 to complete the enrichment process.[21]

Construction of the upper stages of the K-25 plant was cancelled, and Kellex was directed to instead design and build a 540-stage side feed unit, which became known as K-27.

bombing of Hiroshima on August 6, 1945.[24] Libby brought home a stack of newspapers and told his wife, "This is what I've been doing."[6]

Radiocarbon dating

After the war, Libby accepted an offer from the

nitrogen-14 in the air to produce carbon-14:[25][26]

1n + 14N → 14C + 1p

The

palaeontology and other disciplines that dealt with ancient artefacts.[4] In 1960, he was awarded the Nobel Prize in Chemistry "for his method to use carbon-14 for age determination in archaeology, geology, geophysics, and other branches of science".[30] He also discovered that tritium similarly could be used for dating water, and therefore wine.[26]

Atomic Energy Commission

hydrogen bomb.[6] As a commissioner, Libby played an important role in promoting Eisenhower's Atoms for Peace program,[9] and was part of the United States delegation at the Geneva Conferences on Peaceful Uses of Atomic Energy in 1955 and 1958.[6][31]

As the only scientist among the five AEC commissioners, it fell to Libby to defend the Eisenhower administration's stance on atmospheric

nuclear testing.[32] He argued that the dangers of radiation from nuclear tests were less than that from chest X-rays, and therefore less important than the risk of having an inadequate nuclear arsenal, but his arguments failed to convince the scientific community or reassure the public.[9][33] In January 1956, he publicly revealed the existence of Project Sunshine, a series of research studies to ascertain the impact of radioactive fallout on the world's population that he had initiated in 1953 while serving on the GAC.[34] By 1958, even Libby and Teller were supporting limits on atmospheric nuclear testing.[35]

UCLA

Libby in the lab, c. 1960s

Libby resigned from the AEC in 1959, and he became professor of chemistry at University of California, Los Angeles, a position he held until his retirement in 1976. He taught honors freshman chemistry. In 1962, he became the director of the University of California statewide Institute of

Apollo space program and the lunar landings. [4][8]

Libby started the first Environmental Engineering program at UCLA in 1972.[8] As a member of the California Air Resources Board, he worked to develop and improve California's air pollution standards.[9] He established a research program to investigate heterogeneous catalysis with the idea of reducing emissions from motor vehicles through more complete fuel combustion.[8] The election of Richard Nixon as president in 1968 generated speculation that Libby might be appointed as Presidential Science Advisor. There was a storm of protest from scientists who felt that Libby was too conservative, and the offer was not made.[36]

Although Libby retired and became a

professor emeritus in 1976,[8] he remained professionally active until his death in 1980.[3]

Awards and honors

Libby was an elected member of the

Gold Medal of the American Institute of Chemists in 1970,[40] and the Lehman Award from the New York Academy of Sciences in 1971. He was elected a member of the National Academy of Sciences in 1950.[38] Analy High School library has a mural of Libby,[5] and a Sebastopol city park and a nearby highway are named in his honor.[41] His 1947 paper on radiocarbon dating was honored by a Citation for Chemical Breakthrough Award from the Division of History of Chemistry of the American Chemical Society presented to the University of Chicago in 2016.[42][43][29]

Personal life

In 1940, Libby married Leonor Hickey, a physical education teacher.[6] They had twin daughters, Janet Eva and Susan Charlotte, who were born in 1945.[2]

In 1966 Libby divorced Leonor and married

nuclear physicist who was one of the original builders of Chicago Pile-1, the world's first nuclear reactor. She joined him at UCLA as a professor of environmental engineering in 1973. Through this second marriage he acquired two stepsons, the children of her first marriage.[2][44]

Libby died at the

UCLA Medical Center in Los Angeles on September 8, 1980, from a blood clot in his lung complicated by pneumonia.[36] His papers are in the Charles E. Young Research Library at UCLA.[45] Seven volumes of his papers were edited by Leona and Rainer Berger and published in 1981.[46]

Bibliography

Notes

  1. ^ a b c d e "Willard F. Libby – Biographical". Nobel Foundation. Retrieved December 7, 2014.
  2. ^ a b c "Willard F. Libby". Sylent Communications. Retrieved July 26, 2015.
  3. ^ a b c Magill 1989, pp. 703–712.
  4. ^ a b c d e Carey 2006, pp. 231–232.
  5. ^ a b "Willard F. Libby mural at Analy High School and a close up of the plaque that can be seen at Libby's left shoulder, May 6, 1984". Archived from the original on March 4, 2016. Retrieved July 22, 2015.
  6. ^ a b c d e f g "Science: The Philosophers' Stone". Time. August 15, 1955. Retrieved July 22, 2015.
  7. ^ Libby, Willard F. (1933). "Radioactivity of ordinary elements, especially samarium and neodymium: method of detection". University of California, Berkeley. Retrieved July 22, 2015.
  8. ^ a b c d e "University of California: In Memoriam, 1980 – Willard Frank Libby, Chemistry: Berkeley and Los Angeles". University of California. Retrieved July 22, 2015.
  9. ^ a b c d e Seaborg 1981, pp. 92–95.
  10. ^ a b "Willard F. Libby". John Simon Guggenheim Foundation. Retrieved July 28, 2015.
  11. ^ "Alpha Chi Sigma". Sigma Chapter. Retrieved July 22, 2015.
  12. ^ Hewlett & Anderson 1962, p. 128.
  13. ^ "Well-Read, Well-Shaded and Well-Placed". The New York Times. June 15, 1997. Retrieved March 30, 2011. Much later, its residents included five Nobel Prize winners, among them Enrico Fermi, one of the developers of the atomic bomb, and Willard Libby, who discovered radiocarbon dating; Sammy Davis Jr., Pat Boone and Alan Alda, the entertainers, and Robert Ludlum, the author
  14. ^ Hewlett & Anderson 1962, pp. 29–31.
  15. ^ Hewlett & Anderson 1962, pp. 99–100.
  16. ^ Hewlett & Anderson 1962, pp. 101, 126.
  17. ^ Hewlett & Anderson 1962, pp. 121–124.
  18. ^ Hewlett & Anderson 1962, pp. 130–134.
  19. ^ Hewlett & Anderson 1962, pp. 137–141.
  20. ^ a b c Jones 1985, pp. 167–171.
  21. ^ Hewlett & Anderson 1962, pp. 159–160.
  22. ^ Jones 1985, pp. 158–165.
  23. ^ Jones 1985, p. 148.
  24. ^ Hewlett & Anderson 1962, pp. 401–403.
  25. .
  26. ^ a b c Willard Libby on Nobelprize.org Edit this at Wikidata, accessed 1 May 2020 including the Nobel Lecture, December 12, 1960 Radiocarbon Dating
  27. S2CID 27534222
    .
  28. .
  29. ^ .
  30. ^ "The Nobel Prize in Chemistry 1960". Nobel Foundation. Retrieved July 27, 2015.
  31. ^ Hewlett & Holl 1989, p. 446.
  32. ^ Hewlett & Holl 1989, pp. 278–279.
  33. ^ Greene 2007, p. 65.
  34. ^ Buck, Alice (July 1983). "The Atomic Energy Commission" (PDF). United States Department of Energy. Retrieved July 29, 2015.
  35. ^ Hewlett & Holl 1989, pp. 542–543.
  36. ^
    Washington Post
    . Retrieved July 29, 2015.
  37. ^ "To Award Chandler Medal Tomorrow To Chicago Chemist". Columbia Daily Spectator. Vol. XCVIII, no. 66. February 16, 1954. Retrieved July 29, 2015.
  38. ^ a b Laylin 1993, pp. 419–420.
  39. American Academy of Achievement
    .
  40. ^ "Gold Medal Award Winners". AIC. Retrieved January 17, 2015.
  41. ^ "City Parks". City of Sebastopol, California. Archived from the original on November 15, 2016. Retrieved July 29, 2015.
  42. ^ "2016 Awardees". American Chemical Society, Division of the History of Chemistry. University of Illinois at Urbana-Champaign School of Chemical Sciences. 2016. Retrieved June 14, 2017.
  43. ^ "Citation for Chemical Breakthrough Award" (PDF). American Chemical Society, Division of the History of Chemistry. University of Illinois at Urbana-Champaign School of Chemical Sciences. 2016. Retrieved June 14, 2017.
  44. ^ Folkart, Burt A. (November 13, 1986). "Leona Marshall Libby Dies; Sole Woman to Work on Fermi's 1st Nuclear Reactor". Retrieved April 16, 2013.
  45. ^ "Finding Aid for the Willard F. Libby Papers". Retrieved July 28, 2015.
  46. ^ Libby 1981.

References

External links

  • Willard Libby on Nobelprize.org Edit this at Wikidata including the Nobel Lecture, December 12, 1960 Radiocarbon Dating