Pali-Aike volcanic field

Coordinates: 52°04′55″S 69°41′53″W / 52.082°S 69.698°W / -52.082; -69.698
Source: Wikipedia, the free encyclopedia.
(Redirected from
Pali-Aike Crater
)

Pali-Aike volcanic field
A pile of slag-like rocks above a treeless landscape
Pali-Aike
Highest point
Elevation282 m (925 ft) Edit this on Wikidata
Coordinates52°04′55″S 69°41′53″W / 52.082°S 69.698°W / -52.082; -69.698[1]
Geography
Pali-Aike volcanic field is located in Southern Patagonia
Pali-Aike volcanic field
Location in southernmost Argentina and Chile

The Pali-Aike volcanic field is a

tectonic
events.

The volcanic field consists of an older

palaeoclimate data have been obtained. The field was active starting from 3.78 million years ago. The latest eruptions occurred during the Holocene, as indicated by the burial of archaeological artifacts; the Laguna Azul maar formed about 3,400 years before present
.

Humans have lived in the region for thousands of years, and a number of

Rio Gallegos
in Argentina is within 23 kilometres (14 mi) of the volcanic field.

Name

The name Pali-Aike comes from the Tehuelche language, where pale means "hunger" and aike means "location". Originally it was the name of a farm (estancia) and was later applied to the volcanic field.[7]

Human geography

The Pali-Aike volcanic field spans the border between Argentina and Chile, northwest of the

border pass lies next to the volcanic field[16] and Argentine National Route 3 passes through the Pali-Aike volcanic field.[17] The border crossing Paso Integración Austral lies next to the volcanic field.[18] On the Chilean side there are hiking trails.[19]

Geography and structure

Local

The Pali-Aike volcanic field covers a surface area of 4,500 square kilometres (1,700 square miles),

volcanic necks situated in the west–central part of the field may be the formerly underground components of now-eroded volcanic edifices.[24] Among these volcanic necks are the Cuadrado, Domeyko, Gay and Philippi hills, which conspicuously stick out of the surrounding plains.[25] The volcanic rocks were emplaced atop Cenozoic-[26] to Tertiary-age sediments,[27] which were smoothened by glacial action.[24] The sediments are often unstable and prone to mass wasting and landslides.[28]

A deep crater with brown coloured rocks
A vent close to Laguna Azul

There are 467 volcanic vents in the field.

tumuli and a wrinkled surface.[14] Some of these are heavily eroded while the southeastern part of the field features fresh-looking centres,[22] where they form the "Basaltos del Diablo".[34] The individual volcanoes are subdivided into three groups, which are referred to as "U1" (the plateau lavas), "U2" (the older centres) and "U3" (for the more recent vents).[31]

A blue lake within a crater-like depression in the landscape
Laguna Azul lake

Maars are depressions in the ground which are encircled by a ring of sediment that rises above the surrounding terrain; they typically form where frozen or liquid water interacts with rising

ephemeral lakes.[42]

A number of vents form various alignments, usually along northwest–southeast and east–northeast–west–southwest lines;[22] some older centres show a north–south pattern.[43] Such alignments occur when local lineations act as a pathway for magma to ascend to the crust and control not only the position of the vents, but also the shape of the volcanoes forming on top of the vents.[44] These lines match the strike of the Magallanes-Fagnano fault zone and the older Patagonian Austral Rift.[45] Faults within the field have been active in the Tertiary[46] and into the Holocene,[16] and a graben in the southwestern part of the field has diverted lava flows.[46]

The

Mars.[51]

Regional

Pali-Aike is part of the

The actual Andean

Austral Volcanic Zone, a chain of stratovolcanoes and one volcanic field (Fueguino), which is South America's southernmost volcano.[57] The Camusu Aike volcanic field, dated at 2.5–2.9 million years old, is 200 kilometres (120 mi) northwest and the Morro Chico volcano about 50 kilometres (31 mi) west of Pali-Aike.[55]

Geology

Map of the tectonic plates surrounding South America
Tectonic plates around South America

At the southern end of South America, the

adakitic volcanism on the western margin of southernmost South America, forming the Austral Volcanic Zone.[41]

Patagonia is a region where four

South America Plate, interact. Starting 4 million years ago the Chile Ridge collided with the Peru–Chile Trench. This collision originally occurred west of Tierra del Fuego, but has since moved northward towards the Taitao Peninsula. Farther south the interaction between the Scotia and South America plates gave rise to the Deseado and Magallanes-Fagnano faults.[20]

Composition

The Pali-Aike volcanic field is mainly made up of alkali basalt and

ultramafic xenoliths containing augite, dunite, eclogite, garnet, harzburgite, lherzolite, peridotite, phlogopite, pyroxenite, spinel and wehrlites.[52][60] The composition of these xenoliths indicates that they originated from both the crust and the mantle.[58] In addition, rocks from Pali-Aike contain inclusions of fluids consisting of carbon dioxide.[63]

Elemental composition is typical for alkaline intraplate basalts.

isotope ratios are typical for so-called "cratonic" Patagonian back-arc basalts that are remote from the Andean Volcanic Belt and resemble ocean island basalts;[67] a role of the Bouvet hotspot of the Atlantic in generating them has been discussed.[68]

Geologic record

The

Formation,[70] and during the Miocene fluvial sediments formed the Santa Cruz Formation.[71] Sedimentation ceased in the region 14 million years ago, probably because by that time the rain shadow of the Andes was effective in the area.[72] At that time, the Chile Ridge first collided with the Peru–Chile Trench west of Tierra del Fuego; since then the collision zone has migrated north to the Taitao Peninsula off western Chile.[20]

Cause of volcanism

The origin of oceanic-type magmas close to plate boundaries, which occur in other places of the world as well, is usually attributed to slab-dependent processes.

spreading ridges collide with subduction zones.[74] The slab window generated by the Chile Ridge's subduction passed at the latitudes of Pali-Aike about 4.5 million years ago; volcanic activity commenced soon afterwards but the time difference was enough for any subduction-influenced mantle to be displaced by fresher mantle moving through the window, which is the main source of the Pali-Aike volcanic rocks.[74] Eight to six million years ago, a change in the motion of the South America Plate relative to the Scotia Plate caused the onset of a stretching tectonic regime in the Pali-Aike area, thus allowing the ascent of magmas.[75] The large amounts of xenoliths and primitiveness[g] of the magmas suggest that once they had formed, they very quickly rose through the crust to the surface.[61]

Eruptive history

Volcanic activity at Pali-Aike spans the late

Potassium–argon dating has yielded ages of between 3.78 and 0.17 million years ago.[22] Several eruptions 770,000 years ago formed maars, including Laguna Timone.[39] The age of Potrok Aike is not known with certainty but its minimum age on the basis of sediment core data is 240,000 years before present.[79]

The youngest vent is Diablo Negro-La Morada del Diablo along the Chile-Argentina border, which covered an area of 100 square kilometres (39 sq mi) with lava.

before present, suggesting that this vent formed during the late Holocene.[36] Tephra deposits in the region may have originated at Pali-Aike.[80] The volcanic field was rated Argentina's 18th (out of 38) most dangerous volcano in a 2016 study.[81]

Climate, vegetation and fauna

The

sediment core analysis, such as Laguna Azul, Potrok Aike and Magallanes Maar.[77]

Small, rocky hills interspersed above a flat landscape with bushes
Landscape of Pali-Aike

The regional vegetation is

dicots complete the regional flora.[82] The highly permeable basalts intercept precipitation, forming active aquifers that feed into wetlands.[83] Animal species present in the Chilean national park include armadillos, gray foxes, guanacos, Humboldt's hog-nosed skunks, pumas and red foxes. Bird species include Chloephaga and Theristicus species, black-chested buzzard-eagles, cinereous harriers, crested caracaras, harriers, kestrels, peregrine falcons, rheas and southern lapwings, but also aquatic birds like Calidris species, Coscoroba swans, flamingos, two-banded plovers, yellow-billed pintails and yellow-billed teals.[19]

Palaeorecords indicate that ecological conditions varied from place to place in the wider region[84] and during the last 50,000 years.[47] Caves have yielded fossils of animals that lived there during the Holocene[85] and Pleistocene such as big cats[86] and ground sloths,[87] although the former fauna in the region is poorly studied.[88] Since the arrival of Europeans in the late 19th century, invasive European weeds and sheep farming have altered the regional ecosystem.[21]

Archaeology and human history

Early humans inhabited the Pali-Aike region since about 10,000 years ago,[89] including various caves such as Fell Cave, Pali-Aike cave,[9] Condor 1,[90] Cueva del Puma,[91] Las Buitreras,[92] Orejas de Burro[93] but also non-cave sites such as Laguna Thomas Gould.[94] Human use of Fell Cave goes back at least 8,000 years[95] and their presence at Pali-Aike is among the oldest human activities in Patagonia.[96] Archaeological research in the volcanic field began in the 1930s.[97][98]

Prehistoric human activity was concentrated in the southern, wetter sector of the volcanic field.

archaeological artifacts[104] but, perhaps because of the low quality of the rocks, they had only limited use.[105] Weathered volcanic rocks from the Pali-Aike volcanic field were used as red pigments[106] in rock art.[107]

Today sheep are farmed in the volcanic field. On the Chilean side,

geosites.[109] Laguna Azul is already a provincial geosite and tourism target.[16] The Pali-Aike National Park was created in 1970 on the Chilean side[19] and the Laguna Azul Provincial Reserve on the Argentine side, which encompasses Laguna Azul, in 2005.[110]

See also

Notes

  1. ^ A basin is a depression between two geologic boundaries caused by a sinking of the crust.[2]
  2. ^ Cones formed by pyroclasts, which are rocks formed during the fragmentation of magma.[3]
  3. ^ Scoria cones are cones formed by volcanic cinder and pyroclasts,[4] which are rocks formed during the fragmentation of magma.[3]
  4. ^ Maars are explosion craters formed by steam explosions caused by magma-water interactions.[5]
  5. ^ Xenoliths are rocks that are dragged along with magma as it ascends.[6]
  6. ^ Windstreaks are patterns of discoloured ground that are formed when wind redistributes sediments behind topography like craters or depressions.[50]
  7. ^ A primitive magma is one that has not undergone any evolution as would occur in, e.g., a magma chamber.[76]
  8. ^ The rock art in the Pali-Aike volcanic field has been subject to dedicated investigations, including of their ages and styles.[101] At least 71 sites with rock art were known as of 2023.[102]

References

  1. ^ a b c d e "Pali-Aike Volcanic Field". Global Volcanism Program. Smithsonian Institution.
  2. S2CID 241673191
    .
  3. ^ from the original on 2021-12-05. Retrieved 2021-12-05.
  4. from the original on 2018-06-03. Retrieved 2021-12-05.
  5. from the original on 2018-06-17. Retrieved 2021-12-05.
  6. from the original on 2021-11-24. Retrieved 2021-12-17.
  7. ^ a b Haller 2002, p. 285.
  8. ^ D'Orazio et al. 2000, p. 411.
  9. ^ a b Skewes 1978, p. 96.
  10. ^ Haller 2002, p. 201.
  11. ^ "Sernageomin comienza marcha blanca para monitoreo del volcán Burney" [Sernageomin begins trial period in monitoring the Burney volcano]. Intendencia Región de Magallanes y de la Antárctica Chilena (in Spanish). 6 November 2015. Archived from the original on 18 March 2022. Retrieved 15 December 2018.
  12. ^ a b D'Orazio et al. 2000, p. 409.
  13. ^ a b c Rabassa 2017, p. 156.
  14. ^ a b c d e f Mazzoni 2017, p. 156.
  15. ^ Collantes et al. 2020, p. 248.
  16. ^ a b c Corbella, Ercolano & Tiberi 2009, p. 17.
  17. ^ Collantes et al. 2020, p. 254.
  18. ^ "Complejo Integración Austral". Unidad de Pasos Fronterizos (in Spanish). Chilean Government. Retrieved 18 March 2022.
  19. ^ a b c "Parque Nacional Pali Aike" [Pali Aike National Park] (in Spanish). CONAF. Archived from the original on 23 November 2021. Retrieved 23 November 2021.
  20. ^ a b c d e f D'Orazio et al. 2000, p. 408.
  21. ^ a b c d e f g Zolitschka et al. 2006, p. 297.
  22. ^ a b c d e f g h D'Orazio et al. 2000, p. 410.
  23. ^
    ISSN 0718-2244
    .
  24. ^ a b Mazzoni 2017, p. 158.
  25. ^ Rabassa 2017, p. 158.
  26. ^ a b Henríquez et al. 2022, p. 2.
  27. ^ Skewes 1978, p. 99.
  28. ^ a b Haller 2002, p. 290.
  29. from the original on 23 November 2021. Retrieved 23 November 2021.
  30. ^ Mazzarini & D'Orazio 2003, p. 300.
  31. ^ a b c Ross et al. 2011, p. 257.
  32. ^ Skewes 1978, p. 101.
  33. ^ a b Collantes et al. 2020, p. 237.
  34. ^ a b c Ross et al. 2011, p. 255.
  35. ^ Haller 2002, p. 291.
  36. ^ a b c Zolitschka et al. 2006, p. 299.
  37. ^ Corbella, Ercolano & Tiberi 2009, p. 18.
  38. ^ Zolitschka et al. 2006, p. 300.
  39. ^ a b Henríquez et al. 2022, p. 3.
  40. ^ Ross et al. 2011, p. 258.
  41. ^ a b c d Wang et al. 2008, p. 99.
  42. ^
    ISSN 0718-2244
    .
  43. ^ Mazzarini & D'Orazio 2003, p. 304.
  44. ^ a b Mazzarini & D'Orazio 2003, p. 292.
  45. ^ D'Orazio et al. 2000, p. 412.
  46. ^ a b Perucca, Alvarado & Saez 2016, p. 553.
  47. ^ a b Haller 2002, p. 289.
  48. ^ a b c Mazzoni 2017, p. 159.
  49. ^ Haller 2002, p. 288.
  50. from the original on 2018-06-12. Retrieved 2021-12-05.
  51. .
  52. ^ a b Skewes & Stern 1979, p. 3.
  53. ^ a b Skewes & Stern 1979, p. 4.
  54. ^ a b Manzi, Charlin & Cherkinsky 2023, p. 2.
  55. ^ a b Choo et al. 2012, p. 330.
  56. ^ Choo et al. 2012, p. 328.
  57. ^ Perucca, Alvarado & Saez 2016, p. 552.
  58. ^ a b c Selverstone 1982, p. 29.
  59. ^ a b Haller 2002, p. 292.
  60. ^ a b c D'Orazio et al. 2000, p. 413.
  61. ^ a b Mazzarini & D'Orazio 2003, p. 295.
  62. ^ D'Orazio et al. 2000, p. 415.
  63. ^ Selverstone 1982, p. 32.
  64. ^ D'Orazio et al. 2000, p. 416.
  65. ^ D'Orazio et al. 2000, p. 421.
  66. ^ Wang et al. 2008, p. 105.
  67. ^ D'Orazio et al. 2000, p. 420.
  68. ^ Søager et al. 2021, p. 52.
  69. ^ Søager et al. 2021, p. 43.
  70. ^ Zolitschka et al. 2006, pp. 297–298.
  71. ^ a b Zolitschka et al. 2006, p. 298.
  72. ^ Ross et al. 2011, p. 256.
  73. ^ Haller 2002, p. 287.
  74. ^ a b D'Orazio et al. 2000, p. 422.
  75. ^ D'Orazio et al. 2000, p. 424.
  76. .
  77. ^ a b Zolitschka et al. 2006, p. 296.
  78. ^ a b c Haller 2002, p. 295.
  79. ^ Zolitschka et al. 2006, p. 302.
  80. from the original on 18 March 2022. Retrieved 28 November 2021.
  81. from the original on 23 November 2021. Retrieved 23 November 2021.
  82. ^ a b Borrero & Borrazzo 2011, pp. 67–69.
  83. ^ Rabassa 2017, p. 159.
  84. ^ Borrero & Borrazzo 2011, pp. 184–185.
  85. ^ Borrero & Borrazzo 2011, pp. 64–65.
  86. ^ Borrero & Borrazzo 2011, p. 109.
  87. from the original on 16 December 2020. Retrieved 23 November 2021.
  88. ^ Borrero & Borrazzo 2011, p. 62.
  89. ^ Borrero & Charlin 2010, p. 32.
  90. ^ Borrero & Charlin 2010, p. 9.
  91. ^ Borrero & Borrazzo 2011, p. 105.
  92. ^ Borrero & Charlin 2010, p. 55.
  93. S2CID 195203427
    .
  94. ^ Borrero & Borrazzo 2011, p. 215.
  95. ^ Borrero & Borrazzo 2011, p. 212.
  96. S2CID 240255696
    .
  97. from the original on 18 March 2022. Retrieved 23 November 2021.
  98. ^ a b Borrazzo & Cirigliano 2020, p. 178.
  99. S2CID 135160572
    .
  100. from the original on 2022-03-18. Retrieved 2021-11-23.
  101. ^ Manzi, Charlin & Cherkinsky 2023, p. 3.
  102. ISSN 1854-2492
    .
  103. ^ Borrazzo & Cirigliano 2020, p. 186.
  104. ^ Borrero & Borrazzo 2011, pp. 22, 195.
  105. ^ Borrero & Charlin 2010, p. 11.
  106. S2CID 210307071
    .
  107. ^ Manzi, Charlin & Cherkinsky 2023, p. 7.
  108. ^ Mazzoni 2017, p. 160.
  109. ^
    doi:10.13140/2.1.1054.8801. Archived from the original on 2022-03-18. Retrieved 2018-02-22 – via ResearchGate
    .
  110. ^ "Información y recomendaciones para visitar la Reserva Provincial Laguna Azul" [Information and recommendations for visiting the Laguna Azul Provincial Reserve] (in Spanish). Gobierno de la provincia Santa Cruz. Archived from the original on 23 November 2021. Retrieved 23 November 2021.

Sources