Reclus (volcano)

This is a good article. Click here for more information.
Source: Wikipedia, the free encyclopedia.

Reclus
Amalia Glacier with Reclus behind
Highest point
Elevation1,000 m (3,300 ft)[1]
Coordinates50°57′50″S 73°35′05″W / 50.96389°S 73.58472°W / -50.96389; -73.58472[2]
Geography
LocationChile
Parent rangeAndes
Geology
Mountain typeCinder cone
Last eruption1908 ± 1 year

Reclus (named after

Austral Volcanic Zone of the Andes, its summit rises 1,000 metres (3,300 ft) above sea level and is capped by a crater about 1 kilometre (0.62 mi) wide. Close to the volcano lies the Amalia Glacier
, which is actively eroding Reclus.

The volcano has been active during the late Pleistocene and Holocene. A large eruption – among the largest known in the Austral Volcanic Zone – occurred 15,260–14,373 years before present and released over 5 cubic kilometres (1.2 cu mi) of tephra. This tephra fell out over a large area of Patagonia as far as Tierra del Fuego, and disrupted the ecosystem in the region. Subsequently, further but smaller eruptions occurred during the Pleistocene and Holocene. The last historical eruption was in 1908.

The volcano is remote and

monitoring
began only recently. Two dams are located close to the volcano and might be impacted by future eruptions.

Geography and geology

Regional

South of the

strike-slip faulting. This subduction process is not accompanied by much earthquake activity.[3]

Not all volcanism at these latitudes was triggered by subduction; during the

basaltic volcanism. Later subduction restarted and the Austral Volcanic Zone was born.[4]

Farther north in Chile and Argentina, volcanism occurs as a consequence of the subduction of the

Southern Volcanic Zone in southern Chile and Argentina. These two volcanic zones are separated from each other and the Austral Volcanic Zone by gaps without recent volcanic activity.[5]

Local

Reclus is a 1,000 metres (3,300 ft) high

dacitic rocks of pre- or inter-glacial age. The rest of the volcano consists of a 2,000 metres (6,600 ft) wide outcrop of violet-reddish-brown pyroclastic material that is in part covered by snow. Traces of glacial erosion are not widespread on the edifice, but a radial pattern of erosional gullys overlays the volcano.[7] In 2019, a 0.26 cubic kilometres (0.062 cu mi) landslide took place on its northeastern flank, which propagated below the Amalia Glacier.[8] Lava and pyroclastics are its principal output.[6]

The volcano rises within the

Torres del Paine is c. 30 kilometres (19 mi) east of the volcano.[11] Politically, the volcano lies in the commune of Natales.[12]

The volcano was at first confused with Cerro Mano del Diablo, a mountain located southwest of Reclus proper and formed by sedimentary rocks;[9] only in 1987 was the volcano's true location discovered. This volcano, like other volcanoes of the Austral Volcanic Zone, is not monitored and lies at considerable distance from human habitation.[5] This remoteness of the volcanoes in the region and the frequently hostile weather conditions often make it difficult to identify volcanoes and their precise location.[13]

Reclus is part of the Austral Volcanic Zone, a belt of volcanoes at the southernmost tip of South America which includes six volcanoes: from north to south,

adakitic character,[15] but there does not appear to be an unifying reason for this chemistry among the various volcanoes.[16]

Aguilera, Reclus and Burney are constructed along the eastern margin of the

Petrology

The groundmass of Reclus rocks is compositionally

orthopyroxene and plagioclase. Plagioclase and quartz also form xenocrysts.[15] The magmas of Reclus appear to form from slab melts that interacted with the mantle.[17]

Eruptive history

Reclus together with Aguilera, Hudson and Monte Burney has been a major source of

Laguna Potrok Aike and dated to 63,200 years ago[19] and 44,000–51,000 years ago may come from Reclus. However, the potassium content of the later tephra seems to correlate more with Lautaro or Viedma.[20] In general, distinguishing Reclus tephras from these of Aguilera, Lautaro or Viedma is difficult.[21]

R1 eruption

A large eruption, called "R1", occurred at the end of the

The R1 tephra, originally identified in

Laguna Potrok Aike,[33][c] Puerto del Hambre,[31] Río Rubens in Patagonia,[34] Seno Otway, Seno Skyring,[32] Tierra del Fuego[35] and in the Última Esperanza Province.[36] Some of these deposits were formed by tephra that originally fell onto glaciers and was later transported to the eventual finding sites.[11] The tephra emission from this and later eruptions surely disrupted the local ecosystem and human habitations in the region[37] as far south as Tierra del Fuego,[38] possibly causing the extinction of a regional vicuña population in Patagonia.[39]

The composition of the tephra varies between different outcrops; outcrops in

Taylor Dome in Antarctica display a spike in SO
2
about 16,000 years ago, which may have originated at Reclus.[29]

Late Pleistocene and Holocene

Soon after the R1 eruption, an eruption 15,700 years ago deposited the first

Bahia Inutil,[42] Dawson Island[43] and Punta Arenas.[42] The date of the eruption has been constrained with radiocarbon dating to 12,010 ± 55 years before present.[44]

A set of tephras discovered at

Torres del Paine,[45] Nordenskjöld Lake and other locations in Patagonia and emplaced between 8,270 ± 90 and 9,435 ± 40 radiocarbon years ago may have originated in minor eruptions of Reclus.[46] One of these eruptions, at 9,180 ± 120 radiocarbon years ago, might have deposited ash as far as Tierra del Fuego.[47]

A 3,780 year old peat has been covered by tephra at least six times.[1] Eruptions have also been inferred from tephra deposits elsewhere:

  • 12,480 years before present also and deposited ash in Tierra del Fuego.[35]
  • 10,430 years before present, found in Torres del Paine.[48]
  • 9,624 years before present, found in Torres del Paine.[49]
  • A tephra with an age of 10,600–10,200 also comes from Reclus and originated in an eruption smaller than the R1 event.[50]
  • A tephra dated to 2,000 years before present in Torres del Paine have been attributed to Reclus.[48] The tephra has been found in Lago Guanaco, Lago Margarita and Vega Nandú.[51]
  • A tephra dated 1,789 radiocarbon years ago in Lago Guanaco, Torres del Paine.[52] Much less extensive than R1, it has been called "R2 tephra".[6]
  • Another tephra dated 1,035 radiocarbon years ago in Lago Guanaco, Torres del Paine.[52] Also much less extensive than R1, it has been called "R3 tephra".[6]
  • Finally, a tephra in Lake Arthuro of Santa Inés Island appears to come from an eruption at Reclus 1,040 years before present.[53]
  • In 2019, the occurrence of a 1458
    AD eruption was proposed to explain the presence of sulfate deposits in Antarctic ice cores that were previously attributed to Kuwae.[54]

A tephra identified in an ice core at Talos Dome, Antarctica, and emplaced there 3,390 years before present is compositionally similar to Reclus products. However, there is little evidence for large eruptions at Reclus during the late Holocene and the Puyehue-Cordón Caulle volcano in the Southern Volcanic Zone has been proposed as a source for this tephra.[55]

Historical activity

In 1879, sailors on HMS Alert observed a volcanic eruption in an icefield and named the volcano Reclus after Élisée Reclus,[9] but the Global Volcanism Program indicates that an earlier eruption occurred in 1869.[1] The volcano first appeared in the 1922 edition of the map West Coast of South América from Magellan Strait to Valparaíso.[56] Legends of the Tehuelche people about "black smoke" in the region could also refer to volcanic activity at Reclus.[57]

The last recorded eruption of Reclus was in 1908,

Jorge Cepernic Dam on the Santa Cruz River, impacting their activity.[59]

See also

Notes

  1. ^ Equivalent to 15,260–14,373 years Before Present[24][25]
  2. ^ Originally it was estimated to be over 10 kilometres (6.2 mi),[26] but this estimate was later found to be a mathematical error[23]
  3. ^ However, this occurrence of Reclus tephra seems to be younger than the R1 eruption and may reflect complexity in the history of this volcano[33]

References

  1. ^ a b c "Reclus". Global Volcanism Program. Smithsonian Institution.
  2. ^ a b c d Perucca, Alvarado & Saez 2016, p. 553.
  3. ^ a b Stern & Kilian 1996, p. 264.
  4. ^ a b c Stern & Kilian 1996, p. 265.
  5. ^
    ISSN 0716-0208
    .
  6. ^ a b c d Del Carlo et al. 2018, p. 155.
  7. ^ a b c Harambour 1988, p. 175.
  8. .
  9. ^ a b c Harambour 1988, p. 174.
  10. ^ Harambour 1988, p. 177.
  11. ^
    ISSN 0718-7106
    .
  12. ^ "Sernageomin comienza marcha blanca para monitoreo del volcán Burney". Intendencia Región de Magallanes y de la Antárctica Chilena (in Spanish). 6 November 2015.
  13. ^ Harambour 1988, p. 173.
  14. ^ Wastegård et al. 2013, p. 81.
  15. ^ a b Stern & Kilian 1996, p. 267.
  16. ^ Stern & Kilian 1996, p. 271.
  17. ^ Stern & Kilian 1996, p. 280.
  18. ^ Del Carlo et al. 2018, p. 154.
  19. ^ a b Smith et al. 2019, p. 151.
  20. ^ Wastegård et al. 2013, pp. 86–87.
  21. ^ Smith et al. 2019, p. 149.
  22. ^ a b c d Stern et al. 2011, p. 83.
  23. ^ a b c Stern et al. 2011, p. 92.
  24. ^ Smith et al. 2019, p. 138.
  25. ^ Stern 2008, p. 445.
  26. ^ Stern 2008, p. 435.
  27. ^
    S2CID 133857028
    .
  28. ^ Stern 2008, p. 436.
  29. ^
    ISSN 0716-0208
    .
  30. .
  31. ^ a b McCulloch & Davies 2001, p. 148.
  32. ^
    ISSN 0718-686X
    .
  33. ^ a b Wastegård et al. 2013, p. 84.
  34. .
  35. ^ .
  36. ^ Stern et al. 2011, p. 84.
  37. .
  38. ^ McCulloch & Davies 2001, p. 155,166.
  39. ^ Villavicencio et al. 2016, p. 137.
  40. ^ Stern et al. 2011, p. 86.
  41. .
  42. ^ a b Mcculloch & Bentley 1998, p. 781.
  43. ^ Mcculloch & Bentley 1998, p. 782.
  44. ^ Mcculloch & Bentley 1998, p. 777.
  45. ^ Stern 2008, p. 446.
  46. ^ Stern 2008, p. 440.
  47. S2CID 128400121
    .
  48. ^ .
  49. .
  50. ^ Villavicencio et al. 2016, p. 132.
  51. ^ Moy et al. 2008, p. 1340.
  52. ^ a b Moy et al. 2008, p. 1339.
  53. .
  54. .
  55. .
  56. ^ .
  57. .
  58. ^ Perucca, Alvarado & Saez 2016, p. 557.
  59. ^ a b Goyenechea, Cristina (2017). "ESTUDIO DE IMPACTO AMBIENTAL APROVECHAMIENTOS HIDROELÉCTRICOS DEL RÍO SANTA CRUZ (PRESIDENTE DR.NÉSTOR C.KIRCHNER Y GOBERNADOR JORGE CEPERNIC), PROVINCIA DE SANTA CRUZ" (PDF). Provincia de Santa Cruz: Medio Ambiente (in Spanish). pp. 80–81.
  60. SERNAGEOMIN (in Spanish). 4 June 2015. Archived from the original
    on May 13, 2018.
  61. ^ "Sernageomin da a conocer nuevo ranking de volcanes" (in Spanish). SERNAGEOMIN. 20 February 2020. Retrieved 5 December 2021.

Sources

External links