Huaynaputina
![]() | It has been suggested that this article be 1600 eruption of Huaynaputina. (Discuss ) (February 2025) |
Huaynaputina | |
---|---|
Location in Peru | |
Highest point | |
Last eruption | February to March 1600 |
Huaynaputina (
Huaynaputina has erupted several times during the
The volcano has not erupted since 1600. There are
Name
The name Huaynaputina, also spelled Huayna Putina, was given to the volcano after the 1600 eruption.[4][5] According to one translation cited by the Peruvian Ministry of Foreign Trade and Tourism, Huayna means 'new', and Putina means 'fire-throwing mountain'; the full name is meant to suggest the aggressiveness of its volcanic activity and refers to the 1600 eruption being its first one.[6][7][8] Two other translations are 'young boiling one' – perhaps a reference to earlier eruptions – or 'where young were boiled', which may refer to human sacrifices.[9] Other names for the volcano include Chequepuquina[c], Chiquimote, Guayta, Omate and Quinistaquillas.[1] El Misti, another volcano, was sometimes mistakenly referred to as Huaynaputina due to confusion between the two volcanoes.[4]
Geography
The volcano is part of the Central Volcanic Zone of the Andes. Other volcanoes in this zone from northwest to southeast include
Huaynaputina is in the
The region is generally remote and the terrain extreme. The area around Huaynaputina is not easily accessible and human activity is low.[12][19] Within 16 kilometres (9.9 mi) of Huaynaputina there are a number of small farms.[20] A cattle-grazing footpath leads from Quinistaquillas to the volcano,[16] and it is possible to approach the volcano over surrounding ash plains.[21] The landscapes around the volcano have unique characteristics that make them an important geological heritage.[22]
Structure
Huaynaputina lies at an elevation of about 4,850 m (15,910 ft).
One of these funnel-shaped vents is a 70 m (230 ft) trough that cuts into the amphitheatre. The trough appears to be a remnant of a
Surroundings
The terrain west of the volcano is a high plateau at an elevation of about 4,600 m (15,100 ft);[5][28] north of Huaynaputina the volcano Ubinas and the depression of Laguna Salinas lie on the plateau,[23] while the peaks Cerro El Volcán and Cerro Chen are situated south of it.[5] The lava dome Cerro El Volcán and another small lava dome, Cerro Las Chilcas,[47][48] lie 3 km (1.9 mi) south from Huaynaputina.[26] Northeast-east of Huaynaputina,[34] the terrain drops off steeply (2.3 km or 1.4 mi vertically and 6 km or 3.7 mi horizontally) into the Río Tambo valley, which rounds Huaynaputina east and south of the volcano. Some tributary valleys join the Río Tambo from Huaynaputina; clockwise from the east these are the Quebradas Huaynaputina, Quebrada Tortoral, Quebrada Aguas Blancas and Quebrada del Volcán.[5][28] The Río Tambo eventually flows southwestward into the Pacific Ocean.[14]
Geology

The oceanic
There are about 400 Pliocene–Quaternary volcanoes in Peru,[16] with Quaternary activity occurring only in the southern part of the country.[13] Peruvian volcanoes are part of the Central Volcanic Zone.[51] Volcanic activity in that zone has moved eastward since the Jurassic. Remnants of the older volcanism persist in the coastal Cordillera de la Costa but the present-day volcanic arc lies in the Andes, where it is defined by stratovolcanoes.[16][52] Many Peruvian volcanoes are poorly studied because they are remote and difficult to access.[51]
The
Local
The vents of Huaynaputina trend from the north-northwest to the south-southeast, and this trend encompasses the neighbouring volcanoes Ubinas and Ticsani.[5] Ubinas is a typical stratovolcano while Ticsani has a similar structure to Huaynaputina.[52] These volcanoes constitute a volcanic field located behind the major volcanic arc, associated with faults at the margin of the Río Tambo graben[k] and regional strike-slip faults. The faults associated with the volcanic complex have influenced the evolution of the constituent volcanoes including Huaynaputina by acting as conduits for ascending magma especially at fault intersections.[59][60][61] The volcanic rocks produced by these volcanoes have similar compositions,[12] and historical seismic and volcanic activity at Ubinas and Ticsani indicate that they share a magma reservoir.[62] A 40 km × 60 km (25 mi × 37 mi) magma reservoir may underpin this volcanic system.[63]
Composition
The eruption products of the 1600 eruption are
The amount of volatiles[l] in the magma appears to have decreased during the 1600 eruption, indicating that it originated either in two separate magma chambers or from one zoned chamber. This may explain changes in the eruption phenomena during the 1600 activity as the "Dacite 1" rocks erupted early during the 1600 event were more buoyant and contained more gas and thus drove a Plinian eruption, while the latter "Dacite 2" rocks were more viscous and only generated Vulcanian eruptions.[m][74][73] Interactions with the crust and crystal fractionation[n] processes were involved in the genesis of the magmas as well,[76] with the so-called "Dacite 1" geochemical suite forming deep in the crust, while the "Dacite 2" geochemical suite appears to have interacted with the upper crust.[77]
The rocks had a temperature of about 780–815 °C (1,436–1,499 °F) when they were erupted,[78] with the "Dacite 1" being hotter than the "Dacite 2".[79] Their formation may have been stimulated by the entry of mafic[o] magmas into the magmatic system;[74] such an entry of new magma in a volcanic system is often the trigger for explosive eruptions.[77] The magmas erupted early during the 1600 event (in the first stage of the eruption) appear to have originated from depths of more than 20 km (12 mi);[81] petrological analysis indicates that some magmas came from depths greater than 15–25 km (9–16 mi) and others from about 4–6 km (2.5–3.7 mi).[53] An older hypothesis by de Silva and Francis held that the entry of water into the magmatic system may have triggered the eruption.[82] A 2006 study argues that the entry of new dacitic magma into an already existing dacitic magma system triggered the 1600 eruption; furthermore movement of deep andesitic magmas that had generated the new dacite produced movements within the volcano.[83]
Eruption history
The ancestral composite volcano that holds Huaynaputina is part of the Pastillo volcanic complex,
Recently emplaced,
Holocene
Tephra and block-and-ash flow deposits from Holocene eruptions can be found within the amphitheatre.[86] Some tephra layers that are 7,000 to 1,000 years old and close to Ubinas volcano have been attributed to activity at Huaynaputina.[88] Three eruptions of the volcano have been dated to 9,700 ± 190, less than 7,480 ± 40 years ago and 5,750 years Before Present, respectively.[1][89][90] The first two eruptions produced pumice falls and pyroclastic flows.[90] The first of these, a Plinian eruption,[91] also deposited tephra in Laguna Salinas, north of Huaynaputina, and produced a block-and-ash flow to its south.[86] A debris avalanche deposit crops out on the eastern side of the Río Tambo, opposite to the amphitheatre;[30] it may have been formed not long before the 1600 eruption.[86]
The existence of a volcano at Huaynaputina was not recognized before the 1600 eruption,[5][92] with no known previous eruptions other than fumarolic activity.[89][93] As a result, the 1600 eruption has been referred to as an instance of monogenetic volcanism.[43][85] The pre-1600 topography of the volcano was described as "a low ridge in the center of a Sierra",[5] and it is possible that a cluster of lava domes existed at the summit before the 1600 eruption which was blown away during the event.[94][95]
The last eruption before 1600 may have preceded that year by several centuries, based on the presence of volcanic eruption products buried under soil. Native people reportedly offered sacrifices and offerings to the mountain such as birds, personal clothing and sheep,[96][97] although it is known that non-volcanic mountains in southern Peru received offerings as well.[92] There have been no eruptions since 1600;[98] a report of an eruption in 1667 is unsubstantiated and unclear owing to the sparse historical information. It probably reflects an eruption at Ubinas instead.[52][99][100]
Fumaroles and hot springs
Fumaroles occur in the amphitheatre close to the three vents,
Hot springs occur in the region and some of these have been associated with Huaynaputina;[106] these include Candagua and Palcamayo northeast,[107][108] Agua Blanca and Cerro Reventado southeast from the volcano on the Río Tambo and Ullucan almost due west.[109] The springs have temperatures ranging from 22.8–75.4 °C (73.0–167.7 °F) and contain large amounts of dissolved salts.[110] Cerro Reventado and Ullucan appear to be fed from magmatic water and a deep reservoir,[105] while Agua Blanca is influenced by surface waters.[111]
1600 eruption
1600 eruption of Huaynaputina | |
---|---|
Start date | 19 February 1600 |
VEI | 6 |
Based on historical records, Huaynaputina's eruption commenced on 19 February 1600[5] (following earthquakes that began four days prior),[99] with the earliest signs of the impending eruption perhaps in December 1599.[112] The duration of the eruption is not well constrained but may have lasted up to 12–19 hours.[113] The event continued with earthquakes and ash fall for about two weeks and ended on 6 March;[5][99] the air was clear of ash from the eruption on 2 April 1600.[99] Some reports of late ash falls may be due to wind-transported ash,[99] and there are no deposits from a supposed eruption in August 1600; such reports may refer to mudflows or explosions in pyroclastic flows.[114]
The eruption of 1600 was initially attributed to
Prelude and sequence of events
The eruption may have been triggered when new, "Dacite 1" magma entered into a magmatic system containing "Dacite 2" magma and pressurized the system, causing magma to begin ascending to the surface.[73] In the prelude to the eruption, magma moving upwards to the future vents caused earthquakes[119] beginning at a shallow reservoir at a depth of 6 km (3.7 mi);[120] according to the accounts of priests, people in Arequipa fled their houses out of fear that they would collapse.[21] The rising magma appears to have intercepted an older hydrothermal system that existed as much as 3 km (1.9 mi) below the vents; parts of the system were expelled during the eruption.[119][121] Once the magma reached the surface, the eruption quickly became intense.[119]
A first
The Plinian stage was channelled by a fracture and had the characteristics of a fissure-fed eruption.[1][53] Possibly, the second vent formed during this stage,[119] but another interpretation is that the second vent is actually a collapse structure that formed late during the eruption.[131] Much of the excavation of the conduit took place during this stage.[120]
After a hiatus the volcano began erupting pyroclastic flows; these were mostly constrained by the topography and were erupted in stages, intercalated by ash fall that extended to larger distances. Most of these pyroclastic flows accumulated in valleys radiating away from Huaynaputina,[124] reaching distances of 13 km (8 mi) from the vents.[1] Winds blew ash from the pyroclastic flows, and rain eroded freshly deposited pyroclastic deposits.[132] Ash fall and pyroclastic flows alternated during this stage, probably caused by brief obstructions of the vent;[53] at this time a lava dome formed within the second vent.[74] A change in the composition of the erupted rocks occurred, the "Dacite 1" geochemical suite being increasingly modified by the "Dacite 2" geochemical suite that became dominant during the third stage.[77]
Pyroclastic flows ran down the slopes of the volcano, entered the Río Tambo valley and formed dams on the river, probably mainly at the mouth of the Quebrada Aguas Blancas;[5] one of the two dammed lakes was about 28 km (17 mi) long.[29][28] When the dams failed, the lakes released hot water with floating pumice and debris down the Río Tambo.[133] The deposits permanently altered the course of the river.[134] The volume of the ignimbrites has been estimated to be about 2 km3 (0.48 cu mi), excluding the ash that was erupted during this stage.[135] The pyroclastic flows along with pumice falls covered an area of about 950 km2 (370 sq mi).[28]
In the third stage, Vulcanian eruptions took place at Huaynaputina and deposited another ash layer; it is thinner than the layer produced by the first stage eruption and appears to be partly of phreatomagmatic origin. During this stage the volcano also emitted
Witness observations
The eruption was accompanied by intense earthquakes, deafening explosions and noises that could be heard beyond
Caldera collapse
It was initially assumed that caldera collapse took place during the 1600 event,[141] as accounts of the eruption stated that the volcano was obliterated to its foundation;[9] later investigation suggested otherwise. Normally very large volcanic eruptions are accompanied by the formation of a caldera, but exceptions do exist.[59] This might reflect either the regional tectonics or the absence of a shallow magma chamber, which prevented the collapse of the chamber from reaching the surface;[74] most of the magma erupted in 1600 originated at a depth of 20 km (12 mi).[77] Some collapse structures did nevertheless develop at Huaynaputina, in the form of two not readily recognizable circular areas within the amphitheatre and around the three vents,[142] probably when the magmatic system depressurized during the eruption.[83] Also, part of the northern flank of the amphitheatre collapsed during the eruption,[32] and some of the debris fell into the Río Tambo canyon.[143]
Volume and products
The 1600 eruption had a Volcanic Explosivity Index of 6 and is considered to be the only major explosive eruption of the Andes in historical time.[144][145] It is the largest volcanic eruption throughout South America in historical time,[q] as well as one of the largest in the last millennium and the largest historical eruption in the Western Hemisphere.[148][149] It was larger than the 1883 eruption of Krakatoa in Indonesia and the 1991 eruption of Pinatubo in the Philippines.[150] Huaynaputina's eruption column was high enough to penetrate the tropopause and influence the climate of Earth.[151][152]
The total volume of volcanic rocks erupted by Huaynaputina was about 30 km3 (7.2 cu mi), in the form of dacitic tephra, pyroclastic flows and pyroclastic surges,
Tephra fallout

Ash fall from Huaynaputina reached a thickness of 1 cm (0.39 in) within a 95,000 km2 (37,000 sq mi) area of southern Peru,
Some tephra was deposited on the volcanoes El Misti and Ubinas,
The Huaynaputina ash layer has been used as a
Local impact

The eruption had a devastating impact on the region.[5] Ash falls and pumice falls buried the surroundings beneath more than 2 m (6 ft 7 in) of rocks,[29][179] while pyroclastic flows incinerated everything within their path,[179] wiping out vegetation over a large area.[180] Of the volcanic phenomena, the ash and pumice falls were the most destructive.[181] These and the debris and pyroclastic flows devastated an area of about 40 km × 70 km (25 mi × 43 mi) around Huaynaputina,[24][99] and both crops and livestock sustained severe damage.[161]
Between 11 and 17 villages within 20 km (12 mi) from the volcano were buried by the ash,[22] including Calicanto, Chimpapampa, Cojraque, Estagagache, Moro Moro and San Juan de Dios south and southwest of Huaynaputina.[182] The Huayruro Project began in 2015 and aims to rediscover these towns,[183][184] and Calicanto was christened one of the 100 International Union of Geological Sciences heritage sites in 2021.[185] The death toll in villages from toxic gases and ash fall was severe;[186] reportedly, some villages lost their entire populations to the eruption[140] and a priest visiting Omate after the eruption claimed to have "found its inhabitants dead and cooked with the fire of the burning stones".[182] Estagagache has been deemed the "Pompeii of Peru",[187] and the Peruvian Geological, Mining and Metallurgy Institute has published reports detailing geotourism[r] locations around the volcano.[189]
The impact was noticeable in Arequipa,
The surviving local population fled during the eruption and wild animals sought refuge in the city of Arequipa.
The eruption claimed 1,000–1,500 fatalities,
Damage to infrastructure and economic resources of the southern then-
Religious responses
Historians' writings about conditions in Arequipa tell of religious processions seeking to soothe the divine anger,[192] people praying all day and those who had lost faith in the church resorting to magic spells as the eruption was underway,[134] while in Moquegua children were reportedly running around, women screaming[216] and numerous anecdotes of people who survived eruption or did not exist.[217] In the city of Arequipa church authorities organized a series of processions, requiem masses and exorcisms in response to the eruption.[218] In Copacabana and La Paz, there were religious processions, the churches opened their doors and people prayed.[219] Some indigenous people organized their own rituals which included feasting on whatever food and drink they had and battering dogs that were hanged alive.[220] The apparent effectiveness of the Christian rituals led many previously hesitant indigenous inhabitants to embrace Christianity and abandon their clandestine native religion.[220]
News of the event was propagated throughout the
Reportedly, in November 1599 a
Global atmospheric impacts of the 1600 eruption
After the eruption, anomalies in the appearance of the sun were described in Europe and China as a "dimming" or "reddening" "haze" that reduced the sun's luminosity in a cloudless sky and reduced the visibility of shadows.[233] Vivid sunsets and sunrises were noted.[234] A darkened lunar eclipse described by observers in Graz, Austria, in 1601 may have been the consequence of the Huaynaputina aerosols.[233]
Acid layers in ice cores from Antarctica and Greenland have been attributed to Huaynaputina, and their discovery led to initial discussion about whether the 1600 eruption had major effects on Earth's climate.[235] In Antarctica these ice cores include both acid layers and volcanic tephra.[151] The total amount of sulfuric acid erupted by Huaynaputina has been estimated at several values:
Estimate of sulfuric acid erupted | Location (if mentioned) | Ref. |
---|---|---|
100 million tons | Southern Hemisphere | [99] |
42 million tons | Northern Hemisphere | [99] |
56.59 million tons | Global | [236] |
34.5[u] million tons | Northern Hemisphere | [237] |
Other estimates are 50–100 million tons for the
Climate impacts
Volcanic eruptions alter worldwide climate by injecting ash and gases into the atmosphere, which reduce the amount of sunlight reaching the Earth, often causing cold weather and crop failures.[249] The Huaynaputina eruption decreased the amount on solar energy reaching Earth by about 1.9 W/m2.[250][v][152] The summer of 1601 was among the coldest in the Northern Hemisphere during the last six centuries,[99] and the impact may have been comparable to that of the 1815 Tambora,[118] 1452/1453 mystery eruption, 1257 Samalas and 536 mystery eruptions.[15] Other volcanoes may have erupted alongside Huaynaputina and also contributed to the weather anomalies;[252] several large volcanic eruptions took place in the decades preceding and following the Huaynaputina eruption.[245][253]
The eruption had a noticeable impact on growth conditions in the Northern Hemisphere, which were the worst of the last 600 years,
Other climate effects attributed to the Huaynaputina eruption include:
- In climate simulations, after the 1600 eruption a strengthening of the Atlantic meridional overturning circulation is observed along with sea ice growth, followed after a delay by a phase of decreased strength.[263]
- An extraordinarily strong El Niño event in 1607–1608 and a concomitant northward shift of the Southern Hemisphere storm tracks have been attributed to the Huaynaputina eruption.[264]
- Intense winds were reported from the present-day Philippines.[265] Manila galleons reportedly were faster when crossing the Pacific Ocean after 1600, perhaps owing to volcanically induced wind changes.[266]
- A change in the Atlantic Multidecadal Variability around 1600 has been attributed to the Huaynaputina eruption.[267]
Long-term climate effects
Temperatures decreased for a long time after the Huaynaputina eruption in the extratropical Northern Hemisphere.
The 1600 eruption of Huaynaputina occurred at the tail end of a cluster of mid-sized volcanic eruptions, which in a climate simulation had a noticeable impact on Earth's energy balance and were accompanied by a 10% growth of Northern Hemisphere sea ice and a weakening of the
Distant consequences
North America

Thin tree rings and
The Huaynaputina eruption was followed by a drought in what today are the Eastern U.S. and may have hindered the establishment of the colony in Jamestown, Virginia, where mortality from malnutrition was high.[289] The eruption may also have contributed to the disappearance of the Monongahela culture from North America, along with other climate phenomena linked to the El Niño–Southern Oscillation.[290]
California
A major flooding episode in 1605 ± 5 recorded from sediments of the Santa Barbara Basin has been attributed to the Huaynaputina eruption.[266] A global cooling period associated with the Huaynaputina eruption as well as eruptions of Mount Etna and Quilotoa may have forced storm tracks and the jet stream south, causing floods in the Southwestern United States.[291][292] At that time, flooding also took place in Silver Lake in the Mojave Desert,[293] and Mono Lake rose to the highest level of the past millennium. There were also wet spells between 1599 and 1606 in the Sacramento River system, according to analysis of tree rings.[294] Colder temperatures may have contributed to the flooding in Silver Lake, as they would have reduced evaporation.[284]

The Spanish explorers Sebastián Vizcaíno and Juan de Oñate visited the US west coast and the Colorado River Delta in the years following the Huaynaputina eruption. The effects of this eruption and the activity of other volcanoes – namely, large scale flooding – might have induced them to believe that California was an island; this later became one of the most well known cartographic misconceptions of history.[295]
Western Europe
Tree rings indicate unusually cold weather in the
The winter of 1601 was extremely cold in Estonia,[266] Ireland,[304] Latvia and Switzerland,[266] and the ice in the harbour of Riga broke up late.[296] Climate impacts were also reported from Croatia.[156] The 1601 wine harvest was delayed in France, and in Germany it was drastically lower in 1602.[266] Frost continued into summer in Italy and England.[260] A further cold winter occurred in 1602–1603 in Ireland.[304] In Estonia, high mortality and crop failures from 1601 to 1603 led to an at least temporary abandonment of three quarters of all farms.[305] Scotland saw the failure of barley and oat crops in 1602 and a plague outbreak during the preceding year,[306] and in Italy silk prices rose due to a decline in silk production in the peninsula.[307]
In Fennoscandia, the summer of 1601 was one of the coldest in the last four centuries.[233] In Sweden, harvest failures are recorded between 1601 and 1603,[308] with a rainy spring in 1601 reportedly leading to famine.[152] Famine ensued there and in Denmark and Norway during 1602–1603.[305] Finland saw one of the worst barley and rye harvests, and crop yields continued to be poor for some years to follow, accompanied by a colder climate there.[309] The year 1601 was called a "green year" in Sweden and a "straw year" or "year of extensive frosts" in Finland,[310] and it is likely that the 1601 crop failure was among the worst in Finland's history.[311] The Huaynaputina eruption together with other factors[312] led to changes in the social structure of Ostrobothnia,[313] where a number of land holdings were deserted after the eruption[314] and peasants with wider social networks had higher chances to cope with crises than these without.[312]
Russia

Ice cores in the Russian Altai Mountains noted a strong cooling around 1601,[315] with tree ring data also recording a cooling of 3.5 °C (6.3 °F).[316] Cooling was also noted in tree rings of the Kola Peninsula[298] and ice cores on Novaya Zemlya,[317] where glacier melting rates declined.[318]
The summer 1601 was wet,
Balkans and Ottoman Empire
Before the Huaynaputina eruption, severe droughts in
China
Chronicles during the reign of
Weather was anomalous in southern China as well, 1601 seeing a hot autumn and a cold summer and abrupt snowfall. Disease outbreaks occurred afterwards.
Asia outside of China
Unusually narrow or entirely missing tree rings formed in 1601 in trees close to
In Japan,
Hazards and volcanological research
About 30,000 people live in the immediate area of Huaynaputina today, and over 69,000 and 1,000,000 live in the nearby cities of Moquegua and Arequipa, respectively.[339] The towns of Calacoa, Omate, Puquina and Quinistaquillas and others would be threatened in case of renewed eruptions.[35] A repeat of the 1600 eruption would likely cause a considerably greater death toll owing to population growth since 1600, as well as causing substantial socioeconomic disruption in the Andes.[144] Evacuation of the area directly around the volcano would be difficult owing to the poor state of the roads, and the tephra fallout would impact much of Peru's economy.[340] The 1600 eruption is often used as a worst-case scenario model for eruptions at Peruvian volcanoes.[98] Huaynaputina is classified as a "high-risk volcano".[341] In 2017, the Peruvian Geophysical Institute announced that Huaynaputina would be monitored by the future Southern Volcanological Observatory, and in 2019 seismic monitoring of the volcano began.[342][343] As of 2021,[update] there are three seismometers and one device measuring volcano deformation on Huaynaputina.[344]
During the wet season,
Climate and vegetation
Between 4,000–5,000 m (13,000–16,000 ft) in elevation average temperatures are about 6 °C (43 °F) with cold nights,
See also
Notes
- ^ The current geologic epoch, which began 11,700 years ago.[2]
- ^ Vents which release volcanic gases.[3]
- ^ "Volcano of the bad omen"[10]
- ^ Fragmented volcanic rocks erupted by the vent.[31]
- ^ A maar is an explosion crater formed through the interaction of magma and groundwater.[38]
- ^ A volcanic process triggered by the interaction of magma and water.[39]
- ^ An intense volcanic eruption that ejects material as a high column of ash and pumice.[40]
- ^ A sheet-shaped intrusion of magma into already existing rock.[42]
- ^ A strike-slip fault features two plates moving past each other horizontally.[49]
- ^ Ignimbrites are fluids consisting of gas and fragmented rocks that are expelled from volcanoes and form ignimbritic rocks when they solidify.[55]
- ^ A graben is a rectangular depression, which forms when the crust spreads and a block of it sags.[57][58]
- ^ Volatiles are compounds such as water and carbon dioxide that are gaseous at magmatic temperatures but are mixed in the magma.[71]
- ^ Vulcanian eruptions have bursts of explosions, while Plinian eruptions are ongoing stable explosive eruptions.[72][73]
- ^ changes in magma composition caused by crystals settling out under their weight.[75]
- silicium.[80]
- ^ chemically formed deposits in caves.[117]
- ^ Geotourism is a type of tourism to sites with geologic features, like active volcanoes.[188]
- Vesuvius volcano in the Kingdom of Naples.[227]
- ^ In Andean mythology, earth motions are often associated with snakes.[230]
- ^ 46 million tons according to Arfeuille et al. 2014[237] which refers to sulfate aerosols consisting of 75% sulfuric acid, thus corrected by a factor 3/4.[238]
- ^ For comparison, the solar constant regarding Earth is about 1367 W/m2.[251]
- ^ Although other reconstructions have been interpreted as signalling a warm period at that time.[256]
- ^ Frost rings are anomalous tree rings that form when frost occurs during the growing season.[233]
- ^ A palsa is a dome of peat with a frozen core that forms through ice dynamics.[302]
- ^ A groundsel, Senecio huaynaputinaensis, was discovered on Huaynaputina's deposits and named after the volcano.[354]
References
Citations
- ^ a b c d e f g h i "Huaynaputina". Global Volcanism Program. Smithsonian Institution. 2013.
- ^ "International Chronostratigraphic Chart" (PDF). International Commission on Stratigraphy. March 2020. Archived (PDF) from the original on 23 February 2021. Retrieved 23 April 2021.
- ISBN 978-3-642-11274-4. Archivedfrom the original on 20 June 2023. Retrieved 19 February 2021.
- ^ JSTOR 196346.
- ^ a b c d e f g h i j k l m n o p q r s t u Adams et al. 2001, p. 495.
- ^ "Volcán Huaynaputina" [Huaynaputina Volcano]. Recursos Turisticos. Archived from the original on 1 August 2020. Retrieved 27 March 2019.
- ^ Perkins 2008, p. 18.
- ^ Mariño et al. 2022, p. 6.
- ^ a b c Bullard 1962, p. 448.
- ^ Garfia 2024, p. 28.
- ^ Mariño et al. 2022, p. 27.
- ^ a b c d e Lavallée et al. 2009, p. 255.
- ^ a b c Thouret et al. 2005, p. 558.
- ^ a b Delacour et al. 2007, p. 582.
- ^ a b Prival et al. 2019, p. 2.
- ^ a b c d e Masías Alvarez, Ramos Palomino & Antayhua Vera 2013, p. 6.
- ^ a b c Cueva Sandoval et al. 2018, p. 96.
- ^ a b c de Silva 1998, p. 455.
- ^ Schwarzer et al. 2010, p. 1542.
- ^ Cueva Sandoval et al. 2022, p. 13.
- ^ a b c d Bullard 1962, p. 449.
- ^ a b c Mariño et al. 2021, p. 2.
- ^ a b Thouret et al. 2002, p. 531.
- ^ a b c d Eissen, Davila & Thouret 1999, p. 435.
- ^ a b Masías Alvarez, Ramos Palomino & Antayhua Vera 2011, p. 8.
- ^ a b c d e f de Silva & Francis 1990, p. 296.
- ^ Yupa Paredes, Pajuelo Aparicio & Cruz Pauccara 2019, p. 26.
- ^ a b c d e f g Thouret et al. 2002, p. 530.
- ^ a b c Schwarzer et al. 2010, p. 1540.
- ^ a b Thouret et al. 1997, p. 933.
- ISBN 978-0-387-30845-6.
- ^ a b Woodman et al. 1996, p. 62.
- ^ Thouret et al. 2002, p. 533.
- ^ a b Thouret et al. 2002, p. 532.
- ^ a b Vulcanológico, INGEMMET Observatorio (August 2014). "Retos y logros del Observatorio Vulcanológico del INGEMMET" [Challenges and achievements of the INGEMMET Volcanological Observatory]. Revista OVI (in Spanish). Instituto Geológico, Minero y Metalúrgico – INGEMMET: 16. Archived from the original on 1 August 2020. Retrieved 15 March 2020.
- ^ a b c d e Adams et al. 2001, p. 514.
- ^ a b Woodman et al. 1996, p. 61.
- ISBN 978-0-19-964166-6.
- S2CID 242802557.
- from the original on 20 June 2023. Retrieved 20 May 2021.
- ^ Lavallée et al. 2006, p. 339.
- ISBN 978-1-4614-3134-3.
- ^ a b c d e f g h i Adams et al. 2001, p. 496.
- ^ Lavallée et al. 2006, p. 337.
- ^ Lavallée et al. 2006, p. 338.
- ^ Lavallée et al. 2006, p. 341.
- ^ Lavallée et al. 2009, p. 260.
- ^ a b de Silva & Francis 1991, p. 140.
- ISBN 978-1-4614-9213-9. Archivedfrom the original on 12 February 2023. Retrieved 20 May 2021.
- ^ Masías Alvarez, Ramos Palomino & Antayhua Vera 2013, p. 5.
- ^ a b de Silva & Francis 1990, p. 287.
- ^ a b c d e de Silva, Alzueta & Salas 2000, p. 16.
- ^ a b c d e Lavallée et al. 2006, p. 336.
- ^ Lavallée et al. 2006, p. 335.
- from the original on 20 May 2021. Retrieved 20 May 2021.
- ^ Prival et al. 2019, p. 3.
- ISBN 978-1-4614-3134-3.
- ISBN 978-3-642-41714-6.
- ^ a b c Lavallée et al. 2006, p. 334.
- ^ Lavallée et al. 2009, p. 259.
- ^ Lavallée et al. 2009, p. 263.
- ^ Lavallée et al. 2009, pp. 262–263.
- Bibcode:2003AGUFM.V52G..06L.
- ^ Dietterich & de Silva 2010, pp. 307–308.
- .
- ^ a b Adams et al. 2001, p. 504.
- ^ a b c d Costa, Scaillet & Gourgaud 2003, p. 1.
- ^ Oliver et al. 1996, p. 610.
- ^ Juvigné et al. 2008, p. 170.
- ^ Lavallée et al. 2006, p. 343.
- ISBN 978-3-642-27833-4. Archivedfrom the original on 20 June 2023. Retrieved 20 May 2021.
- ISSN 0956-540X.
- ^ a b c Schubring, Salas & Silva 2008, p. 390.
- ^ a b c d e Adams et al. 2001, p. 517.
- ISBN 978-3-642-41714-6. Archivedfrom the original on 20 May 2021. Retrieved 20 May 2021.
- ^ Oliver et al. 1996, p. 612.
- ^ a b c d Schubring, Salas & Silva 2008, p. 387.
- ^ a b Adams et al. 2001, p. 512.
- ^ Schubring, Salas & Silva 2008, p. 388.
- ISBN 978-3-642-11271-3
- ^ a b Dietterich & de Silva 2010, p. 310.
- ^ de Silva & Francis 1990, p. 298.
- ^ a b Lavallée et al. 2006, p. 346.
- ^ Lavallée et al. 2006, pp. 334–335.
- ^ a b Lavallée et al. 2009, p. 257.
- ^ a b c d e Thouret et al. 2002, p. 537.
- ^ Lavallée et al. 2009, p. 261.
- ^ Harpel, Christopher J.; Vela Valdez, Jessica Carolina; Rivera Porras, Marco Antonio; Wright, Heather M. N. (April 2018). "Tefroestratigrafía post-glacial del volcán Ubinas, Perú" [Postglacial tephro-stratigraphy of Ubinas volcano, Peru]. Instituto Geológico, Minero y Metalúrgico – INGEMMET (in Spanish): 63. Archived from the original on 2 August 2020. Retrieved 15 March 2020.
- ^ from the original on 25 March 2019. Retrieved 25 March 2019.
- ^ a b Juvigné et al. 2008, p. 159.
- ^ Mariño et al. 2021, p. 6.
- ^ a b c d de Silva, Alzueta & Salas 2000, p. 17.
- .
- ^ a b Thouret et al. 2002, p. 567.
- ^ a b Eissen, Davila & Thouret 1999, p. 438.
- ^ ISBN 978-1-315-42516-0.
- ^ a b Thouret et al. 2002, p. 547.
- ^ ISSN 1475-4959.
- ^ a b c d e f g h i j k Adams et al. 2001, p. 497.
- ^ Thouret et al. 2002, p. 562.
- ^ Bullard 1962, p. 444.
- ^ a b Masías Alvarez, Ramos Palomino & Antayhua Vera 2011, p. 41.
- ^ Masías Alvarez, Ramos Palomino & Antayhua Vera 2011, p. 45.
- ^ Masías Alvarez, Ramos Palomino & Antayhua Vera 2011, p. 43.
- ^ a b Masías Alvarez, Ramos Palomino & Antayhua Vera 2011, p. 57.
- ^ Masías Alvarez, Ramos Palomino & Antayhua Vera 2011, p. 47.
- ^ Yupa Paredes, Pajuelo Aparicio & Cruz Pauccara 2019, p. 66.
- ^ Yupa Paredes, Pajuelo Aparicio & Cruz Pauccara 2019, p. 64.
- ^ Masías Alvarez, Ramos Palomino & Antayhua Vera 2011, p. 48.
- ^ Masías Alvarez, Ramos Palomino & Antayhua Vera 2011, p. 51.
- ^ Masías Alvarez, Ramos Palomino & Antayhua Vera 2011, p. 55.
- ^ de Silva, Alzueta & Salas 2000, p. 23.
- ^ Prival et al. 2019, p. 14.
- ^ a b Thouret et al. 2002, p. 553.
- .
- ^ Sepulveda 2019, p. 3.
- ISBN 978-1-4020-4411-3. Archivedfrom the original on 20 June 2023. Retrieved 23 April 2021.
- ^ Bibcode:2006AGUFMGC51A0458L.
- ^ a b c d e Adams et al. 2001, p. 515.
- ^ a b c Lavallée et al. 2006, p. 344.
- ^ Dietterich & de Silva 2010, p. 307.
- ^ a b Adams et al. 2001, p. 498.
- S2CID 129528307.
- ^ a b Adams et al. 2001, p. 501.
- ^ Adams et al. 2001, p. 508.
- ^ Dietterich & de Silva 2010, p. 306.
- ^ a b Lara 2013, p. 140.
- ^ a b c Eissen, Davila & Thouret 1999, p. 437.
- ^ Adams et al. 2001, p. 516.
- ^ Thouret et al. 2002, p. 550.
- ^ Lavallée et al. 2006, p. 340.
- ^ Thouret et al. 2002, p. 558.
- ^ Thouret et al. 2002, p. 564.
- ^ a b de Silva, Alzueta & Salas 2000, p. 20.
- ^ a b Adams et al. 2001, p. 503.
- ^ Lara 2013, p. 139.
- ^ Peralta Casani 2021, p. 62.
- ^ a b Peralta Casani 2021, p. 63.
- ^ Petit-Breuilh Sepúlveda 2004, p. 92.
- ^ a b Bullard 1962, p. 450.
- ^ a b Bullard 1962, p. 451.
- ^ Lavallée et al. 2006, pp. 338, 341.
- ^ Thouret et al. 1997, p. 938.
- ^ .
- ^ de Silva & Francis 1991, p. 141.
- ^ a b Robock, Self & Newhall 2018, p. 571.
- from the original on 22 October 2019. Retrieved 11 December 2019.
- ^ a b c Adams et al. 2001, p. 494.
- ^ Lara 2016, p. 250.
- ^ Dietterich & de Silva 2010, p. 305.
- ^ a b c d Fei & Zhou 2009, p. 927.
- ^ a b c d e f Lee, Zhang & Fei 2016, p. 2.
- ^ a b Thouret et al. 2002, p. 568.
- ^ Dietterich & de Silva 2010, pp. 306–307.
- ISSN 1026-8774.
- ^ a b Finizola, Anthony; Antoine, Raphael; Thouret, Jean-Claude; Delcher, Eric; Fauchard, Cyrille; Gusset, Rachel; Japura Paredes, Saida B.; Lazarte Zerpa, Ivonne A.; Mariño Salazar, Jersey; Ramos Palomino, Domingo A.; Saintenoy, Thibault; Thouret, Liliane; Chávez, José A; Macedo Franco, Luisa D.; Chijcheapaza, Rolando; Del Carpio, José A.; Perea, Ruddy; Puma, Nino; Macedo Sánchez, Orlando; Torres, José L. (2018). "Physical impacts of the CE 1600 Huaynaputina eruption on the local habitat: Geophysical insights" (PDF). p. 106. Archived from the original (PDF) on 27 March 2019. Retrieved 27 March 2019.
- ^ Mariño et al. 2021, p. 7.
- ^ JSTOR 40025559.
- .
- ISSN 1432-0819.
- ^ a b c d Love 2017, p. 56.
- ^ Mariño et al. 2022, p. 34.
- .
- ^ Thouret et al. 2005, p. 567.
- PMID 24124645.
- ^ Prival et al. 2019, p. 4.
- .
- .
- Bibcode:2012AGUFMGC21D0995S.
- ^ Delacour et al. 2007, p. 589.
- S2CID 162620636.
- ^ Malek et al. 2019, p. 213.
- ^ Malek et al. 2019, p. 205.
- ^ Osipov et al. 2014, p. 845.
- S2CID 129328691.
- S2CID 54458850. Archived from the originalon 26 September 2019. Retrieved 24 September 2019.
- S2CID 130930404.
- ^ a b Cueva Sandoval et al. 2018, p. 99.
- S2CID 83370136.
- ^ de Silva, Alzueta & Salas 2000, p. 19.
- ^ a b Mariño et al. 2021, p. 9.
- ^ Manzanedo, Gustavo (22 September 2015). "Alistan expedición para redescubir pueblos extintos por volcán Huaynaputina" [An expedition to rediscover the towns wiped out by Huaynaputina volcano]. Diario Correo (in Spanish). Retrieved 27 March 2019.
- ^ Peralta Casani 2021, p. 11.
- ISBN 978-1-7923-9975-6. Archived(PDF) from the original on 27 October 2022. Retrieved 13 November 2022.
- ^ Marsilli 2011, p. 268.
- ^ Tejada, Jessica Olaechea (19 February 2021). "Estagagache, la Pompeya peruana sepultada por la erupción del Huaynaputina" [Estagagache: The Peruvian Pompeji buried by the eruption of Huaynaputina]. Agencia Peruana de Noticias Andina (in Spanish). Archived from the original on 18 April 2021. Retrieved 18 April 2021.
- ^ Mariño et al. 2022, p. 32.
- ^ Mariño et al. 2022, p. 8.
- ^ de Silva & Francis 1990, p. 288.
- ISBN 978-1-107-03923-0.
- ^ a b c Marsilli 2011, p. 267.
- ^ "Historia" [History]. Municipalidad Provincial General Sánchez Cerro (in Spanish). Archived from the original on 27 March 2019. Retrieved 27 March 2019.
- ^ a b Love 2017, p. 58.
- S2CID 143860810.
- ISSN 1099-1212.
- OCLC 815970176.
- ^ a b Lara 2016, p. 251.
- ^ ISSN 0718-2376.
- ^ a b Thouret et al. 1997, p. 932.
- ^ Oliver et al. 1996, p. 609.
- ^ Mariño et al. 2021, p. 17.
- ISSN 0718-2376.
- ^ Rice 2014, p. 173.
- ^ Boza Cuadros 2021, p. 11.
- ^ Sepulveda 2019, p. 6.
- from the original on 27 October 2020. Retrieved 18 December 2020.
- from the original on 20 November 2023. Retrieved 20 November 2023.
- ISSN 0718-6894.
- ISSN 2469-0732.
- ^ a b Garfia 2024, p. 13.
- ^ Petit-Breuilh Sepúlveda 2004, p. 100.
- ^ Boza Cuadros 2021, p. 20.
- ^ Peralta Casani 2021, p. 69.
- S2CID 16696350.
- ^ de Silva, Alzueta & Salas 2000, p. 21.
- ^ Peralta Casani 2021, p. 55.
- ^ Petit-Breuilh Sepúlveda 2004, p. 97.
- ^ Peralta Casani 2021, pp. 62–63.
- ^ a b Petit-Breuilh Sepúlveda 2004, p. 96.
- ^ Lara 2016, pp. 251–252.
- ^ Lara 2016, p. 252.
- ^ Rice 2014, pp. 217–218.
- ^ Peralta Casani 2021, p. 53.
- ^ Love 2017, p. 57.
- ^ Lara 2013, p. 141–142.
- S2CID 162776722.
- ^ Love 2017, p. 63.
- ^ Málaga Núñez-Zeballos, Alejandro (2011). "Una arequipeña camino a los altares. Sor Ana de los Angeles (1602–1686)" [An Arequipa woman on the way to the Altars. Sister Ana de los Angeles (1602–1686)]. Diálogo Andino – Revista de Historia, Geografía y Cultura Andina (in Spanish). Archived from the original on 24 March 2019. Retrieved 1 April 2019.
- ^ S2CID 229404724.
- ^ Marsilli 2011, p. 271.
- ^ Marsilli 2011, p. 273.
- ^ a b c d e f de Silva 1998, p. 456.
- ^ a b Fei & Zhou 2009, p. 928.
- ^ Adams et al. 2001, pp. 494–495.
- ^ Slawinska & Robock 2017, p. 2147.
- ^ ISSN 1994-0416.
- S2CID 54012740.
- PMID 27721477.
- ^ a b Plechov, Balashova & Dirksen 2010, p. 976.
- ISSN 0260-3055.
- hdl:10023/28665.
- ^ Osipov et al. 2014, p. 847.
- ^ Costa, Scaillet & Gourgaud 2003, p. 3.
- ^ ISSN 2156-2202.
- ISSN 1529-6466.
- S2CID 205242896.
- .
- ^ Lee, Zhang & Fei 2016, p. 1.
- ISSN 1944-8007.
- ISSN 1814-9324.
- .
- S2CID 54759512.
- .
- S2CID 202189123.
- ^ S2CID 182799188.
- hdl:2262/102919.
- ISSN 0148-0227.
- S2CID 54690405.
- ^ a b Fei & Zhou 2009, p. 931.
- from the original on 3 January 2023. Retrieved 3 January 2023.
- S2CID 42314185.
- ^ Slawinska & Robock 2017, pp. 2153–2154.
- .
- ^ a b Peralta Casani 2021, p. 65.
- ^ a b c d e f g h Verosub & Lippman 2008, p. 142.
- S2CID 252249527.
- PMID 26751947.
- Bibcode:2017AGUFMPP43D..05Z.
- S2CID 91675823.
- S2CID 225239334.
- from the original on 8 December 2021. Retrieved 8 December 2021.
- ^ Slawinska & Robock 2017, pp. 2152–2153.
- S2CID 134800470.
- ^ Robock, Self & Newhall 2018, p. 578.
- .
- ^ Moreno-Chamarro et al. 2017, p. 734.
- ^ Moreno-Chamarro et al. 2017, p. 739.
- ^ a b White et al. 2022, p. 740.
- ^ Moreno-Chamarro et al. 2017, p. 742.
- ^ White et al. 2022, p. 751.
- ISSN 0277-3791.
- ^ Grissino-Mayer, Henri D.; Gentry, Christopher M.; Croy, Steve; Hiatt, John; Osborne, Ben; Stan, Amanda; Wight, Georgina D. (2006). "Fire history of western Montana forested landscapes via tree-ring analyses". Professional Paper (23). Northern Rockies Fire Science Network: 51. Archived from the original on 24 March 2019. Retrieved 24 March 2019.
- ^ S2CID 130527677.
- from the original on 17 August 2020. Retrieved 20 October 2019.
- S2CID 151042094.
- from the original on 17 August 2020. Retrieved 12 July 2019.
- S2CID 55036906.
- ISBN 978-0-313-35559-2.
- JSTOR 40914458.
- ^ Schimmelmann et al. 2017, p. 58.
- ^ Schimmelmann et al. 2017, p. 59.
- ^ Schimmelmann et al. 2017, p. 51.
- ^ Schimmelmann et al. 2017, p. 55.
- ^ Miller, David M., ed. (April 2018). Against the current:The Mojave River from Sink to source (PDF). The 2018 Desert Symposium Field Guide and Proceedings. Desert Symposium. p. 165. Archived from the original (PDF) on 6 October 2022.
- ^ a b c d e Perkins 2008, p. 19.
- S2CID 134216410.
- ^ from the original on 8 July 2020. Retrieved 24 March 2019.
- .
- S2CID 9939200.
- .
- ISBN 978-3-319-26947-4. Archivedfrom the original on 2 June 2021. Retrieved 29 May 2021.
- S2CID 133859626.
- ^ ISSN 1748-9326.
- ^ a b c Huhtamaa & Helama 2017, p. 40.
- ^ Huhtamaa & Helama 2017, pp. 40–41.
- ISBN 978-1-5247-3322-3.
- S2CID 154744742.
- S2CID 154759492.
- ISSN 1795-1895.
- ^ Huhtamaa & Helama 2017, p. 41.
- ^ a b Huhtamaa, Stoffel & Corona 2022, p. 2088.
- ^ Huhtamaa & Helama 2017, pp. 47–48.
- ^ Huhtamaa, Stoffel & Corona 2022, p. 2082.
- from the original on 17 August 2020. Retrieved 20 October 2019.
- ^ Gervais & MacDonald 2001, pp. 500–503.
- ^ Rusakov et al. 2022, p. 53.
- ^ Rusakov et al. 2022, p. 54.
- ^ Plechov, Balashova & Dirksen 2010, p. 977.
- ISSN 0894-8755.
- ^ PMID 29997408.
- ^ Kužić 2013, pp. 105–107.
- ^ Kužić 2013, p. 109.
- S2CID 247994990.
- ^ Lee, Zhang & Fei 2016, p. 4.
- ^ a b Lee, Zhang & Fei 2016, p. 10.
- ^ a b c Lee, Zhang & Fei 2016, p. 3.
- ^ Fei & Zhou 2009, p. 929.
- ^ Fei & Zhou 2009, p. 930.
- ^ Fei & Zhou 2009, p. 932.
- ISSN 1004-8227. Archived from the originalon 24 March 2019. Retrieved 24 March 2019.
- hdl:1912/7458.
- S2CID 202189123.
- PMID 26293214.
- ^ Wohlfarth et al. 2019, pp. 17204, 17206.
- ^ Lee, Zhang & Fei 2016, p. 8.
- ^ Lee, Zhang & Fei 2016, p. 9.
- ISSN 1752-0908.
- ^ Perú: Perfil Sociodemográfico – Informe Nacional [Peru: Sociodemographic profile – national information] (PDF) (Report) (in Latin American Spanish). Instituto Nacional de Estadística e Informática. August 2018. p. 27. Archived (PDF) from the original on 11 February 2020. Retrieved 4 July 2020.
- ^ Prival et al. 2019, pp. 15–16.
- ^ Del Carpio Calienes, José Alberto; Rivera, Marco; Torres, José; Tavera, Hernando; Puma, Nino (August 2022). Evaluación del peligro volcánico en Perú: una herramienta para la gestión del riesgo de desastres [Volcanic hazard assessment in Peru: a tool for disaster risk management] (Report). p. 3. Archived from the original on 25 October 2022. Retrieved 2 November 2022.
- ^ Hancco, Nelly (31 October 2017). "IGP vigilará los 10 volcanes más peligrosos del Perú" [IGP will monitor the 10 most dangerous Peruvian volcanoes]. Diario Correo (in Spanish). Archived from the original on 22 April 2023. Retrieved 27 March 2019.
- ^ Centeno Quico, Riky; Rivera, Marco (April 2020). Reconocimiento automático de señales sísmicas de origen volcánico para la alerta temprana de erupciones volcánicas del sur del Perú [Automatic recognition of seismic signals of volcanic origin, for the timely warning of volcanic eruptions in southern Peru] (Report) (in Spanish). p. 19. Archived from the original on 25 January 2021. Retrieved 18 December 2020.
- ^ Puma et al. 2021, p. 52.
- ^ Puma et al. 2021, p. 56.
- ^ Masías Alvarez, Ramos Palomino & Antayhua Vera 2011, p. 5.
- ^ Masías Alvarez, Ramos Palomino & Antayhua Vera 2011, p. 7.
- ^ Masías Alvarez, Ramos Palomino & Antayhua Vera 2011, p. 9.
- ^ Masías Alvarez, Ramos Palomino & Antayhua Vera 2011, p. 34.
- ^ Masías Alvarez, Ramos Palomino & Antayhua Vera 2011, p. 38.
- ^ Masías Alvarez, Ramos Palomino & Antayhua Vera 2011, p. 58.
- ^ Yupa Paredes, Pajuelo Aparicio & Cruz Pauccara 2019, p. 31.
- ^ Schwarzer et al. 2010, p. 1543.
- from the original on 10 March 2024. Retrieved 8 December 2023.
- ^ Schwarzer et al. 2010, p. 1541.
Sources
- Adams, Nancy K.; de Silva, Shanaka L.; Self, Stephen; Salas, Guido; Schubring, Steven; Permenter, Jason L.; Arbesman, Kendra (1 April 2001). "The physical volcanology of the 1600 eruption of Huaynaputina, southern Peru". Bulletin of Volcanology. 62 (8): 493–518. S2CID 129649755.
- Boza Cuadros, Maria Fernanda (5 May 2021). "Bridge and Boundary: The Maritime Connections of Colonial Arequipa, Peru". International Journal of Historical Archaeology. 26 (2): 291–315. S2CID 235546360.
- Bullard, Fred M. (1 December 1962). "Volcanoes of Southern Peru". Bulletin Volcanologique. 24 (1): 443–453. S2CID 140637499.
- Costa, Fidel; Scaillet, Bruno; Gourgaud, Alain (2003). "Massive atmospheric sulfur loading of the AD 1600 Huaynaputina eruption and implications for petrologic sulfur estimates" (PDF). Geophysical Research Letters. 30 (2): 1068. S2CID 53611304.
- Cueva Sandoval, Kevin Arnold; Mariño Salazar, Jersy; Thouret, Jean-Claude; Japura Paredes, Saida Blanca; Macedo Franco, Luisa Diomira (April 2018). "Pueblos enterrados por la erupción de 1600 d.C. del volcán Huaynaputina: geología del sector de Calicanto y Chimpapampa" [Villages buried by the 1600 AD eruption of Huaynaputina volcano: Geology of the Calicanto and Chimpapampa sectors]. Instituto Geológico, Minero y Metalúrgico – INGEMMET. Archived from the original on 2 November 2022. Retrieved 2 November 2022.
- Cueva Sandoval, Kevin Arnold; Mariño Salazar, Jersy; Japura Paredes, Saida Blanca; Sánchez Torres, Neldy Paola; Arias Salazar, Carla; Ramos Palomino, Domingo A.; Lazarte Zerpa, Ivonne Alejandra; Macedo Franco, Luisa Diomira; Huillca Chuctaya, José Wilfredo; Del Carpio Calienes, José; Pari Pinto, Walter; Thouret, Jean-Claude; Donnadieu, Franck; Labazuy, Philippe; Finizola, Anthony; Antoine, Raphael; Gusset, Rachel; Saintenoy, Thibault; Delcher, Eric; Fauchard, Cyrille (May 2022). "Estudio de la erupción del volcán Huaynaputina del año 1600 d. C.: Características de la erupción e impacto en poblaciones y el clima - [Boletín C 92]" [Study of the eruption of the Huaynaputina volcano in 1600 AD: Characteristics of the eruption and impact on people and climate - [Boletín C 92]]. Repositorio Institucional INGEMMET. Archived from the original on 2 November 2022. Retrieved 2 November 2022.
- Delacour, Adélie; Gerbe, Marie-Christine; Thouret, Jean-Claude; Wörner, Gerhard; Paquereau-Lebti, Perrine (1 April 2007). "Magma evolution of Quaternary minor volcanic centres in southern Peru, Central Andes" (PDF). Bulletin of Volcanology. 69 (6): 581–608. S2CID 128636358.
- de Silva, Shanaka L.; Francis, Peter W. (1991). Volcanoes of the Central Andes. Springer-Verlag. ISBN 978-0-387-53706-1.
- de Silva, Shanaka L.; Francis, Peter W. (1 March 1990). "Potentially active volcanoes of Peru-Observations using Landsat Thematic Mapper and Space Shuttle imagery". Bulletin of Volcanology. 52 (4): 286–301. S2CID 140559785.
- de Silva, Shanaka; Alzueta, Jorge; Salas, Guido (2000), "The socioeconomic consequences of the A.D. 1600 eruption of Huaynaputina, southern Peru", Volcanic Hazards and Disasters in Human Antiquity, Geological Society of America, ISBN 978-0-8137-2345-7
- de Silva, Shanaka L. (June 1998). "Global influence of the AD 1600 eruption of Huaynaputina, Peru". Nature. 393 (6684): 455–458. S2CID 4385765.
- Dietterich, Hannah; de Silva, Shanaka (30 November 2010). "Sulfur yield of the 1600 eruption of Huaynaputina, Peru: Contributions from magmatic, fluid-phase, and hydrothermal sulfur". Journal of Volcanology and Geothermal Research. 197 (1): 303–312. ISSN 0377-0273.
- Eissen, Jean-Philippe; Davila, Jasmine; Thouret, Jean-Claude (1 May 1999). "Largest explosive eruption in historical times in the Andes at Huaynaputina volcano, A.D. 1600, southern Peru". Geology. 27 (5): 435–438. ISSN 0091-7613.
- Fei, Jie; Zhou, Jie (2009). "The possible climatic impact in North China of the AD 1600 Huaynaputina eruption, Peru". International Journal of Climatology. 29 (6): 927–933. S2CID 128955647.
- Garfia, Yasmina Rocio Ben Yessef (8 July 2024). "Entre la providencia y el empirismo: transmisión del relato e interpretación de la erupción de Huaynaputina de 1600 en los discursos religiosos (siglos XVII-XVIII)". Revista de Historia Moderna (in Spanish) (42): 11–41. from the original on 10 July 2024. Retrieved 20 November 2024.
- Gervais, Bruce R.; MacDonald, Glen M. (May 2001). "Tree-ring and summer-temperature response to volcanic aerosol forcing at the northern tree-line, Kola Peninsula, Russia". The Holocene. 11 (4): 499–505. S2CID 129917924.
- Huhtamaa, Heli; Helama, Samuli (July 2017). "Distant impact: tropical volcanic eruptions and climate-driven agricultural crises in seventeenth-century Ostrobothnia, Finland". Journal of Historical Geography. 57: 40–51. hdl:1874/363286.
- Huhtamaa, Heli; Stoffel, Markus; Corona, Christophe (9 September 2022). "Recession or resilience? Long-range socioeconomic consequences of the 17th century volcanic eruptions in northern Fennoscandia". Climate of the Past. 18 (9): 2077–2092. from the original on 3 November 2022. Retrieved 3 November 2022.
- Juvigné, Étienne; Thouret, Jean-Claude; Loutsch, Isabelle; Lamadon, Sébastien; Frechen, Manfred; Fontugne, Michel; Rivera, Marco; Dávila, Jasmine; Mariño, Jersy (1 June 2008). "Retombées volcaniques dans des tourbières et lacs autour du massif des Nevados Ampato et Sabancaya (Pérou méridional, Andes Centrales)" [Volcanic fallout in peat bogs and lakes around the Nevados Ampato and Sabancaya massif (southern Peru, Central Andes)]. Quaternaire. Revue de l'Association française pour l'étude du Quaternaire (in French). 19 (2): 157–173. ISSN 1142-2904.
- Kužić, Krešimir (27 November 2013). "Posljedice erupcije vulkana Huaynaputina godine 1600. na hrvatske zemlje" [Consequences of the eruption of the Huaynaputina volcano in 1600 on Croatian lands]. Ekonomska i ekohistorija: časopis za gospodarsku povijest i povijest okoliša (in Croatian). 9 (1): 97–113. from the original on 3 November 2022. Retrieved 3 November 2022.
- Lara, Jaime (2013). "Francis Alive and Aloft: Franciscan Apocalypticism in the Colonial Andes". The Americas. 70 (2): 139–163. S2CID 145350611.
- Lara, Jaime (2016). "A Vulcanological Joachim of Fiore and an Aerodynamic Francis of Assisi in Colonial Latin America". Studies in Church History. 41: 249–272. S2CID 163498097.
- Lavallée, Yan; de Silva, Shanaka L.; Salas, Guido; Byrnes, Jeffrey M. (1 February 2006). "Explosive volcanism (VEI 6) without caldera formation: insight from Huaynaputina volcano, southern Peru". Bulletin of Volcanology. 68 (4): 333–348. S2CID 129271739.
- Lavallée, Yan; de Silva, Shanaka L.; Salas, Guido; Byrnes, Jeffrey M. (10 October 2009). "Structural control on volcanism at the Ubinas, Huaynaputina, and Ticsani Volcanic Group (UHTVG), southern Peru". Journal of Volcanology and Geothermal Research. 186 (3): 253–264. ISSN 0377-0273.
- Lee, Harry F.; Zhang, David D.; Fei, Jie (2016). "1600 AD Huaynaputina Eruption (Peru), Abrupt Cooling, and Epidemics in China and Korea". Advances in Meteorology. 2016: 1–12. hdl:10722/232118.
- Love, Thomas F. (2017). The Independent Republic of Arequipa: Making Regional Culture in the Andes. University of Texas Press. ISBN 978-1-4773-1461-6.
- Mariño, Jersy; Cueva, Kevin; Thouret, Jean-Claude; Arias, Carla; Finizola, Antony; Antoine, Raphael; Delcher, Eric; Fauchard, Cyrille; Donnadieu, Franck; Labazuy, Philippe; Japura, Saida; Gusset, Rachel; Sanchez, Paola; Ramos, Domingo; Macedo, Luisa; Lazarte, Ivonne; Thouret, Liliane; Del Carpio, José; Jaime, Lourdes; Saintenoy, Thibault (5 July 2021). "Multidisciplinary Study of the Impacts of the 1600 CE Huaynaputina Eruption and a Project for Geosites and Geo-touristic Attractions". Geoheritage. 13 (3): 64. from the original on 8 December 2021. Retrieved 8 December 2021.
- Puma, Roger Machacca; Calienes, José Alberto Del Carpio; Porras, Marco Antonio Rivera; Huarache, Hernando Jhonny Tavera; Franco, Luisa Diomira Macedo; Calle, Jorge Andrés Concha; Zerpa, Ivonne Alejandra Lazarte; Quico, Riky Gustavo Centeno; Sacsi, Nino Celestino Puma; Aguilar, José Luis Torres; Alva, Katherine Andrea Vargas; Igme, John Edward Cruz; Quispe, Lizbeth Velarde; Nina, Javier Vilca; Garay, Alan Reinhold Malpartida (1 November 2021). "Monitoring of active volcanoes in Peru by the Instituto Geofísico del Perú: Early warning systems, communication, and information dissemination". Volcanica. 4 (S1): 49–71. from the original on 2 December 2021. Retrieved 8 December 2021.
- Malek, Md Abdul; Eom, Hyo-Jin; Hwang, Heejin; Hur, Soon Do; Hong, Sungmin; Hou, Shugui; Ro, Chul-Un (20 January 2019). "Single particle mineralogy of microparticles from Himalayan ice-cores using SEM/EDX and ATR-FTIR imaging techniques for identification of volcanic ash signatures". Chemical Geology. 504: 205–215. S2CID 134692024.
- Mariño, J.; Arias, C.; Cueva, K.; Thouret, J.C.; Finizola, A.; Antoine, R.; Delcher, E.; Fauchard, C.; Donnadieu, F.; Labazuy, P.; Japura, S.; Gusset, R.; Sánchez, P.; Ramos, D.; Thouret, L.; Ancalle, A.; Saintenoy, T. (2022). Paisajes del volcán Huaynaputina, patrimonio geológico y cultural. Guía geoturística [Landscapes of Huaynaputina volcano, geological and cultural heritage. Geotouristic guide] (Report). Boletín Serie I: Patrimonio y Geoturismo (in Spanish). Vol. 15. INGEMMET. p. 132. Archived from the original on 6 March 2023. Retrieved 8 December 2023.
- Marsilli, María N. (2011). "Volcanes locuaces e inextinguible fuego interior: la erupción del Huaynaputina en 1600 en la narrativa jesuítica" [Talkative volcanoes and unquenchable inner fire: the eruption of Huaynaputina in 1600 in the Jesuit narrative]. Escritura, Imaginación Política y la Compañía de Jesús en América Latina (in Spanish): 265–290. ISBN 978-84-7290-526-9. Archivedfrom the original on 31 March 2019. Retrieved 20 March 2019 – via works.bepress.com.
- Masías Alvarez, Pablo Jorge; Ramos Palomino, Domingo A.; Antayhua Vera, Yanet (2011). "Monitoreo sísmico temporal y caracterización geoquímica de fumarolas y fuentes termales del volcán Huaynaputina" [Temporal seismic monitoring and geochemical characterization of the fumaroles and hot springs of Huaynaputina volcano]. Instituto Geológico, Minero y Metalúrgico – INGEMMET (in Spanish). Archived from the original on 1 August 2020. Retrieved 15 March 2020.
- Masías Alvarez, Pablo Jorge; Ramos Palomino, Domingo A.; Antayhua Vera, Yanet (2013). "Monitoreo de los volcanes Ticsani, Sabancaya y Huaynaputina: Periodo 2006–2012 [Boletín C 53]" [Monitoring of the volcanoes Ticsani, Sabancaya and Huaynaputina: 2006–2012 [Bulletin C 53]]. Instituto Geológico, Minero y Metalúrgico – INGEMMET. Archived from the original on 1 August 2020. Retrieved 15 March 2020.
- Moreno-Chamarro, Eduardo; Zanchettin, Davide; Lohmann, Katja; Jungclaus, Johann H. (1 February 2017). "An abrupt weakening of the subpolar gyre as trigger of Little Ice Age-type episodes". Climate Dynamics. 48 (3): 727–744. ISSN 1432-0894.
- Oliver, Richard A.; Vatin-perignon, Nicole; Goemans, Pierre; Keller, Francine (19 September 1996). The Geochemistry of Huaynaputina Volcano, Southern Peru (PDF). Third ISAG. CiteSeerX 10.1.1.504.8693. Archived from the original(PDF) on 24 September 2018.
- Osipov, Eduard Y.; Khodzer, Tamara V.; Golobokoval, Liudmila P.; Onischuk, N. A.; Lipenkov, Vladimir Y.; Ekaykin, Alexey A.; Shibaev, Yuriy A. (2014). "High-resolution 900 year volcanic and climatic record from the Vostok area, East Antarctica". The Cryosphere. 8 (3): 843–851. .
- Peralta Casani, Pedro (April 2021). Desastres Naturales en el Sur del Perú y Norte de Chile: Una historia de terremotos, erupciones volcánicas, inundaciones y epidemias (1582-1714) (in Spanish). Universidad Nacional de Moquegua. Fondo Editorial. ISBN 978-612-4466-09-0.
- Perkins, Sid (2008). "Disaster goes global: The eruption in 1600 of a seemingly quiet volcano in peru changed global climate and triggered famine as far away as Russia". Science News. 174 (5): 16–21. ISSN 1943-0930.
- Petit-Breuilh Sepúlveda, María Eugenia (2004). La historia eruptiva de los volcanes hispanoamericanos (Siglos XVI al XX): El modelo chileno [The eruption history of Spanish American volcanoes (16th–20th century): The Chilean model] (in Spanish). Huelva, Spain: Casa de los volcanes. ISBN 978-84-95938-32-9.
- Plechov, Pavel Yu.; Balashova, Anna L.; Dirksen, Oleg V. (1 July 2010). "Magma degassing during 7600 14C Kurile Lake caldera-forming eruption and its climatic impact". Doklady Earth Sciences. 433 (1): 974–977. S2CID 56184279.
- Prival, J.-M.; Thouret, J.-C.; Japura, S.; Gurioli, L.; Bonadonna, C.; Mariño, J.; Cueva, K. (18 December 2019). "New insights into eruption source parameters of the 1600 CE Huaynaputina Plinian eruption, Peru". Bulletin of Volcanology. 82 (1): 7. S2CID 209392997.
- Rice, Prudence M. (2014). Space-Time Perspectives on Early Colonial Moquegua. University Press of Colorado. Project MUSE.
- Robock, Alan; Self, Stephen; Newhall, Chris (1 April 2018). "Anticipating future Volcanic Explosivity Index (VEI) 7 eruptions and their chilling impacts". Geosphere. 14 (2): 572–603. .
- Rusakov, Valeriy; Kuz'mina, Тat'yana; Borisov, Alexander; Gromyak, Irina; Dogadkin, Denis; Romashova, Тat'yana; Solovi'eva, Galina; Lukmanov, Ruslan (May 2022). "A drastic change in glacial dynamics at the beginning of the seventeenth century on Novaya Zemlya coincides in time with the strongest volcanic eruption in Peru and the Great Famine in Russia". Quaternary Research. 107: 43–56. S2CID 247423824.
- Schimmelmann, Arndt; Zhao, Meixun; Harvey, Colin C.; Lange, Carina B. (20 January 2017). "A Large California Flood and Correlative Global Climatic Events 400 Years Ago". Quaternary Research. 49 (1): 51–61. S2CID 128472439.
- Schubring, Steven; Salas, Guido; Silva, Shanaka de (1 May 2008). "Triggering explosive eruptions—The case for silicic magma recharge at Huaynaputina, southern Peru". Geology. 36 (5): 387–390. ISSN 0091-7613.
- Schwarzer, Christian; Huamaní, Fatima Cáceres; Cano, Asunción; La Torre, María I.; Weigend, Maximilian (1 November 2010). "400 years for long-distance dispersal and divergence in the northern Atacama desert – Insights from the Huaynaputina pumice slopes of Moquegua, Peru". Journal of Arid Environments. 74 (11): 1540–1551. ISSN 0140-1963.
- Sepulveda, Maria Eugenia Petit-Breuilh (8 July 2019). "The value of historical documents for risk reduction: the 1600 Huaynaputina Eruption (Peru)". Annals of Geophysics. 62 (1): 11. ISSN 2037-416X.
- Slawinska, Joanna; Robock, Alan (29 November 2017). "Impact of Volcanic Eruptions on Decadal to Centennial Fluctuations of Arctic Sea Ice Extent during the Last Millennium and on Initiation of the Little Ice Age". Journal of Climate. 31 (6): 2145–2167. ISSN 0894-8755.
- Thouret, Jean-Claude; Dávila, Jasmine; Rivera, Marco; Gourgaud, Alain; Eissen, Jean-Philippe; Le Pennec, Jean-Luc; Juvigné, Étienne (1 December 1997). "L'éruption explosive de 1600 au Huaynaputina (Pérou), la plus volumineuse de l'histoire dans les Andes centrales" [The 1600 explosive eruption of Huaynaputina (Peru), the most voluminous in history of the Central Andes]. Comptes Rendus de l'Académie des Sciences, Série IIA. 325 (12): 931–938. ISSN 1251-8050.
- Thouret, Jean-Claude; Juvigné, Étienne; Gourgaud, Alain; Boivin, Pierre A.; Dávila, Jasmine (30 June 2002). "Reconstruction of the AD 1600 Huaynaputina eruption based on the correlation of geologic evidence with early Spanish chronicles". Journal of Volcanology and Geothermal Research. 115 (3): 529–570. ISSN 0377-0273.
- Thouret, Jean-Claude; Rivera, Marco; Wörner, Gerhard; Gerbe, Marie-Christine; Finizola, Anthony; Fornari, Michel; Gonzales, Katherine (1 July 2005). "Ubinas: the evolution of the historically most active volcano in southern Peru" (PDF). Bulletin of Volcanology. 67 (6): 557–589. S2CID 129294486.
- White, Sam; Moreno-Chamarro, Eduardo; Zanchettin, Davide; Huhtamaa, Heli; Degroot, Dagomar; Stoffel, Markus; Corona, Christophe (12 April 2022). "The 1600 CE Huaynaputina eruption as a possible trigger for persistent cooling in the North Atlantic region". Climate of the Past. 18 (4): 739–757. from the original on 2 November 2022. Retrieved 2 November 2022.
- Wohlfarth, Barbara; Hsu, Huang-Hsiung; Shi, Zhengguo; Wu, Chung-Che; Kwiecien, Ola; Gao, Yongli; Chabangborn, Akkaneewut; Cai, Wenju; Partin, Judson W.; Duerrast, Helmut; Chou, Yu-Chen; Cheng, Hai; Breitenbach, Sebastian F. M.; Cai, Yanjun; Edwards, R. Lawrence; Chawchai, Sakonvan; Löwemark, Ludvig; Shen, Chuan-Chou; Tan, Liangcheng (7 August 2019). "Rainfall variations in central Indo-Pacific over the past 2,700 y". Proceedings of the National Academy of Sciences. 116 (35): 17201–17206. PMID 31405969.
- Woodman, Ronald; Gourgaud, Alain; Cotten, Jo; Eissen, Jean-Philippe; Juvigné, Étienne; Rivera, Marcos; Davila, Jasmine; Thouret, Jean-Claude (November 1996). "Huaynaputina volcano, south Perú: Site of the major explosive eruption in historic times in the Central Andes". Instituto Geofisico del Peru. Archived from the original on 8 August 2020. Retrieved 20 March 2019.
- Verosub, Kenneth L.; Lippman, Jake (2008). "Global Impacts of the 1600 Eruption of Peru's Huaynaputina Volcano". Eos, Transactions American Geophysical Union. 89 (15): 141–142. ISSN 2324-9250.
- Yupa Paredes, Gastón Ronald; Pajuelo Aparicio, Diana; Cruz Pauccara, Vicentina (June 2019). "Caracterización de los sistemas geotermales asociados a los volcanes activos Ubinas y Huaynaputina, región Moquegua – [Boletín B 60]" [Characterization of the geothermal systems associated with the active volcanoes Ubinas and Huaynaputina, Moquegua Region [Bulletin B 60]]. Instituto Geológico, Minero y Metalúrgico – INGEMMET (in Spanish). from the original on 11 December 2019. Retrieved 15 March 2020.
Further reading
- Japura Paredes, Saida Blanca (30 October 2018). "Estudio estratigráfico y sedimentológico del depósito de caída pliniana de la erupción del año 1600 d.C. del volcán Huaynaputina" [Stratigraphic and sedimentological study of the Plinian fall deposit from the 1600 AD eruption of Huaynaputina volcano]. Universidad Nacional del Altiplano. Archived from the original on 31 March 2019. Retrieved 20 March 2019.
- Jara, L. A.; Thouret, Jean-Claude; Siebe, Claus; Dávila, Jasmine (2000). "The Ad 1600 Eruption of Huaynaputina as described in Early Spanish Chronicles". Bibliovirtual | Sociedad Geológica del Perú. Geotecnia y riesgos geológicos.