Science in the ancient world

Source: Wikipedia, the free encyclopedia.

Science in the ancient world encompasses the earliest history of science from the protoscience of prehistory and ancient history to late antiquity. In ancient times, culture and knowledge were passed through oral tradition. The development of writing further enabled the preservation of knowledge and culture, allowing information to spread accurately.

The earliest scientific traditions of the ancient world developed in the

China, and Mesoamerica. Aside from alchemy and astrology that waned in importance during the Age of Enlightenment
, civilizations of the ancient world laid the roots of modern sciences.

Ancient Near East

Mesopotamia

Mesopotamian clay tablet-letter from 2400 BC, Louvre (from King of Lagash, found at Girsu
)

Around 3500 BC, in Sumer (now Iraq), the Mesopotamian people began preserving some observations of the cosmos with extremely thorough numerical data.

Mathematics

Pythagorean theorem has demonstrated evidence of ancient writing forms. It was recorded in the 18th century BC on the Mesopotamian cuneiform tablet known as Plimpton 322. The columns of numbers in the tablet generates several Pythagorean triples such as (3, 4, 5) and (5, 12, 13).[1]

Astronomy

Babylonian astronomy was "the first and highly successful attempt at giving a refined mathematical description of astronomical phenomena."

Hellenistic world, in India, in Islam, and in the West—if not indeed all subsequent endeavour in the exact sciences—depend upon Babylonian astronomy in decisive and fundamental ways".[3]

Scribes recorded observations of the cosmos such as the motions of the stars, the planets, and the Moon on clay tablets. The cuneiform style of writing revealed that astronomers used mathematical calculations to observe the motions of the planets.[4] Astronomical periods identified by Mesopotamian scientists remain widely used in Western calendars: the solar year and the lunar month. Using data, Mesopotamians developed arithmetical methods to compute the changing length of daylight during the year, and to predict the Lunar phases and planets along with eclipses of the Sun and Moon.

Only a few astronomers' names are known, such as

arc-seconds per year, compares well with the current value of 49.8 arc-seconds per year (26,000 years for Earth's axis to round the circle of nutation). Astronomy and astrology were considered to be the same thing, as evidenced by the practice of this science[clarification needed] in Babylonia by priests. Mesopotamian astronomy became more astrology-based later in the civilisation, studying the stars in terms of horoscopes and omens.[5]

Archaeology

Following the Late Bronze Age collapse, the practice of various sciences continued in post–Iron Age Mesopotamia. For instance, in the nascent history of archaeology, king Nabonidus of the Neo-Babylonian Empire was a pioneer in the analysis of artifacts. Foundation deposits of king Naram-Sin of the Akkadian Empire dated circa 2200 BC were discovered and analyzed by Nabonidus around the 550 BC.[6][7] These deposits belonged to the temples of Shamash the sun god and the warrior goddess Annunitum in Sippar, and Naram-Sin's temple to the moon god in Harran, which were restored by Nabonidus.[6] Nabonidus was the first known figure in history to make an attempt at dating archaeological artifacts found at excavated sites,[8] though his estimates were inaccurate by hundreds of years.[6][8][7]

Egypt

Significant advances in ancient Egypt included astronomy, mathematics, and medicine. Egypt was also a centre of alchemical research for much of the Western world.

Architecture, engineering, and mathematics

Ancient Egyptian geometry was a necessary outgrowth of surveying to preserve the layout and ownership of farmland, which was flooded annually by the Nile. The 3–4–5 right triangle and other rules of thumb served to represent rectilinear structures, including architecture such as post and lintel structures.

Writing

Egyptian hieroglyphs served as the basis for the Proto-Sinaitic script, the ancestor of the Phoenician alphabet from which the later Hebrew, Greek, Latin, Arabic, and Cyrillic alphabets were derived. The city of Alexandria retained preeminence with its library, which was damaged by fire when it fell under Roman rule,[9] being destroyed before 642.[10][11] With it, a large amount of antique literature and knowledge was lost.

Medicine

An Egyptian practice of treating migraine in ancient Egypt

The

Ebers papyrus (c. 1550 BC) also contains evidence of traditional empiricism
.

According to a paper published by Michael D. Parkins, 72% of 260 medical prescriptions in the Hearst Papyrus had no curative elements.

better source needed
]

Persia

Scholar Nersi with Anahita in Persia

In the Sasanian Empire, great attention was given to mathematics and astronomy. The Academy of Gondishapur is a prominent example in this regard.[17] Astronomical tables date to this period, and Sassanid observatories were later imitated by Muslim astronomers and astrologers of the Islamic Golden Age. In the mid-Sassanid era, an influx of knowledge came to Persia from the West in the form of views and traditions of Greece which, following the spread of Christianity, accompanied Syriac language. In the Early Middle Ages, Persia became a stronghold of Islamic science. After the establishment of Umayyad and Abbasid states, many Iranian scholars were sent to the capitals of these Islamic dynasties.

Greco-Roman world

The legacy of classical antiquity included substantial advances in factual knowledge, especially in anatomy, zoology, botany, mineralogy, geography, mathematics and astronomy. Scholars advanced their awareness of the importance of certain scientific problems, especially those related to the problem of change and its causes.[18] In the Hellenistic period, scholars frequently employed the principles developed in earlier Greek thought: the application of mathematics and deliberate empirical research.[19]

Scientific practices

Plato and Aristotle (The School of Athens, 1511)

In classical antiquity, the inquiry into the workings of the universe took place both in investigations aimed at practical goals, such as calendar-making and medicine, and in abstract investigations known as natural philosophy. The ancient people who are considered the first scientists may have thought of themselves as "natural philosophers", as practitioners of a skilled profession, or as followers of a religious tradition.

Scientific thought in classical antiquity became tangible beginning in the 6th century BC in the pre-Socratic philosophy of Thales and Pythagoras. Thales, the "father of science", was the first to postulate non-supernatural explanations for natural phenomena such as lightning and earthquake. Pythagoras founded the Pythagorean school, which investigated mathematics and was the first to postulate that the Earth is spherical.[20]

In about 385 BC, Plato founded the Academy. Aristotle, Plato's student, began the "scientific revolution" of the Hellenistic period culminating in the 3rd and 2nd centuries with scholars such as Eratosthenes, Euclid, Aristarchus of Samos, Hipparchus, and Archimedes. Plato and Aristotle's development of deductive reasoning was particularly useful to later scientific inquiry.

Architecture and engineering

Astronomy

Schematics of the Antikythera mechanism

The level of achievement in Hellenistic astronomy and engineering is shown by the

circumference of the Earth.[21] Hipparchus produced the first systematic star catalogue
.

Mathematics

The mathematician

mathematical rigour and introduced the concepts of definition, axiom, theorem and proof still in use today in his Elements.[22] Archimedes is credited with using the method of exhaustion to calculate the area under the arc of a parabola with the summation of an infinite series, and gave a remarkably accurate approximation of pi.[23] He is also known in physics for his studies on hydrostatics and the principle of the lever
.

Medicine

In medicine, Herophilos was the first to base his conclusions on the dissection of the human body and to describe the nervous system. Hippocrates and his followers were the first to describe many diseases and medical conditions. Galen performed many audacious operations—including brain and eye surgeries—that were not tried again for more than a millennia.[24]

Mineralogy