Isotopes of aluminium

Source: Wikipedia, the free encyclopedia.
Isotopes of aluminium (13Al)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
26Al trace 7.17×105 y
β+
84%
26Mg
ε[2]16% 26Mg
γ
27Al 100%
stable
talk
  • edit
  • cosmic-ray protons. Aluminium isotopes have found practical application in dating marine sediments, manganese nodules, glacial ice, quartz in rock exposures, and meteorites. The ratio of 26Al to 10Be has been used to study the role of sediment transport, deposition, and storage, as well as burial times, and erosion, on 105 to 106 year time scales.[citation needed
    ] 26Al has also played a significant role in the study of meteorites.

    List of isotopes

    Nuclide[5]
    [n 1]
    Z N Isotopic mass (Da)[6]
    [n 2][n 3]
    Half-life
    Decay
    mode
    [n 4]
    Daughter
    isotope

    [n 5]
    Isotopic
    abundance
    Excitation energy[n 7]
    22Al 13 9 22.01954(43)# 91.1(5) ms β+, p (55%) 21Na (4)+
    β+ (43.862%) 22Mg
    β+, 2p (1.1%) 20Ne
    β+, α (0.038%) 18Ne
    23Al 13 10 23.0072444(4) 470(30) ms β+ (99.54%) 23Mg 5/2+
    β+, p (0.46%) 22Na
    24Al 13 11 23.99994754(25) 2.053(4) s β+ (99.9634%) 24Mg 4+
    β+, α (.035%) 20Ne
    β+, p (.0016%) 23Na
    24mAl 425.8(1) keV 130(3) ms
    IT
    (82.5%)
    24Al 1+
    β+ (17.5%) 24Mg
    β+, α (.028%) 20Ne
    25Al 13 12 24.99042831(7) 7.183(12) s β+ 25Mg 5/2+
    26Al[n 8] 13 13 25.98689186(7) 7.17(24)×105 y β+ (85%) 26Mg 5+ Trace[n 9]
    ε (15%)[7]
    26mAl 228.306(13) keV 6.3460(8) s β+ 26Mg 0+
    27Al 13 14 26.98153841(5) Stable 5/2+ 1.0000
    28Al 13 15 27.98191009(8) 2.245(5) min β 28Si 3+
    29Al 13 16 28.9804532(4) 6.56(6) min β 29Si 5/2+
    30Al 13 17 29.982968(3) 3.62(6) s β 30Si 3+
    31Al 13 18 30.9839498(24) 644(25) ms β (98.4%) 31Si 5/2(+)
    β, n (1.6%) 30Si
    32Al 13 19 31.988084(8) 33.0(2) ms β (99.3%) 32Si 1+
    β, n (.7%) 31Si
    32mAl 955.7(4) keV 200(20) ns IT 32Al (4+)
    33Al 13 20 32.990878(8) 41.7(2) ms β (91.5%) 33Si 5/2+
    β, n (8.5%) 32Si
    34Al 13 21 33.996779(3) 56.3(5) ms β (74%) 34Si (4−)
    β, n (26%) 33Si
    34mAl 550(100)# keV 26(1) ms β (70%) 34Si (1+)
    β, n (30%) 33Si
    35Al 13 22 34.999760(8) 37.2(8) ms β (62%) 35Si 5/2+#
    β, n (38%) 34Si
    36Al 13 23 36.00639(16) 90(40) ms β (70%) 36Si
    β, n (30%) 35Si
    37Al 13 24 37.01053(19) 11.5(4) ms β (71%) 37Si 5/2+#
    β, n (29%) 36Si
    38Al 13 25 38.0174(4) 9.0(7) ms β 38Si
    39Al 13 26 39.02217(43)# 7.6(16) ms β, n (90%) 38Si 5/2+#
    β (10%) 39Si
    40Al 13 27 40.02962(43)# 5.7(3 (
    sys)) ms[8]
    β, n (64%) 39Si
    β, 2n (20%) 38Si
    β (16%) 40Si
    41Al 13 28 41.03588(54)# 3.5(8 (stat), 4 (sys)) ms[8] β, n (86%) 40Si 5/2+#
    β, 2n (11%) 39Si
    β (3%) 41Si
    42Al 13 29 42.04305(64)# 1# ms [>170 ns] β 42Si
    43Al 13 30 43.05048(86)# 1# ms [>170 ns] β 43Si
    This table header & footer:
    1. ^ mAl – Excited nuclear isomer.
    2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
    3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
    4. ^ Modes of decay:
      IT:
      Isomeric transition
    5. ^ Bold symbol as daughter – Daughter product is stable.
    6. ^ ( ) spin value – Indicates spin with weak assignment arguments.
    7. ^ a b # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
    8. radiodating events early in the Solar System's history and meteorites
    9. ^ cosmogenic

    Aluminium-26

    The decay level scheme for 26Al and 26mAl to 26Mg.[7][9]

    asteroids after their formation 4.55 billion years ago.[10]

    References

    External links