Isotopes of tellurium

Source: Wikipedia, the free encyclopedia.
Isotopes of tellurium (52Te)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
120Te 0.09%
stable
121Te synth 16.78 d ε
121Sb
122Te 2.55% stable
123Te 0.89% stable[2]
124Te 4.74% stable
125Te 7.07% stable
126Te 18.8% stable
127Te synth 9.35 h
β
127I
128Te 31.7% 2.2×1024 y
ββ
128Xe
129Te synth 69.6 min β 129I
130Te 34.1% 8.2×1020 y ββ
130Xe
talk
  • edit
  • There are 39 known isotopes and 17 nuclear isomers of tellurium (52Te), with atomic masses that range from 104 to 142. These are listed in the table below.

    Naturally-occurring tellurium on Earth consists of eight isotopes. Two of these have been found to be

    quintillion) years. The longest-lived artificial radioisotope of tellurium is 121Te with a half-life of about 19 days. Several nuclear isomers
    have longer half-lives, the longest being 121mTe with a half-life of 154 days.

    The very-long-lived radioisotopes 128Te and 130Te are the two most common isotopes of tellurium. Of elements with at least one stable isotope, only indium and rhenium likewise have a radioisotope in greater abundance than a stable one.

    It has been claimed that electron capture of 123Te was observed, but more recent measurements of the same team have disproved this.[6] The half-life of 123Te is longer than 9.2 × 1016 years, and probably much longer.[6]

    124Te can be used as a starting material in the production of

    iodine-124
    .

    The short-lived isotope 135Te (half-life 19 seconds) is produced as a

    neutron absorber, and the cause of the iodine pit
    phenomenon.

    With the exception of

    beta emission
    ) as a rare branch.

    List of isotopes

    Nuclide
    [n 1]
    Z N Isotopic mass (Da)
    [n 2][n 3]
    Half-life
    [n 4][n 5]
    Decay
    mode
    [n 6]
    Daughter
    isotope

    [n 7]
    Natural abundance (mole fraction)
    Excitation energy Normal proportion Range of variation
    104Te[7] 52 52 <18 ns α 100Sn 0+
    105Te 52 53 104.94364(54)# 620(70) ns α 101Sn 5/2+#
    106Te 52 54 105.93750(14) 70(20) µs
    [70(+20−10) µs]
    α 102Sn 0+
    107Te 52 55 106.93501(32)# 3.1(1) ms α (70%) 103Sn 5/2+#
    β+ (30%) 107Sb
    108Te 52 56 107.92944(11) 2.1(1) s α (49%) 104Sn 0+
    β+ (48.5%) 108Sb
    β+, p (2.4%) 107Sn
    β+, α (.065%) 104In
    109Te 52 57 108.92742(7) 4.6(3) s β+ (86.99%) 109Sb (5/2+)
    β+, p (9.4%) 108Sn
    α (7.9%) 105Sn
    β+, α (.005%) 105In
    110Te 52 58 109.92241(6) 18.6(8) s β+ (99.99%) 110Sb 0+
    β+, p (.003%) 109Sn
    111Te 52 59 110.92111(8) 19.3(4) s β+ 111Sb (5/2)+#
    β+, p (rare) 110Sn
    112Te 52 60 111.91701(18) 2.0(2) min β+ 112Sb 0+
    113Te 52 61 112.91589(3) 1.7(2) min β+ 113Sb (7/2+)
    114Te 52 62 113.91209(3) 15.2(7) min β+ 114Sb 0+
    115Te 52 63 114.91190(3) 5.8(2) min β+ 115Sb 7/2+
    115m1Te 10(7) keV 6.7(4) min β+ 115Sb (1/2)+
    IT
    115Te
    115m2Te 280.05(20) keV 7.5(2) µs 11/2−
    116Te 52 64 115.90846(3) 2.49(4) h β+ 116Sb 0+
    117Te 52 65 116.908645(14) 62(2) min β+ 117Sb 1/2+
    117mTe 296.1(5) keV 103(3) ms IT 117Te (11/2−)
    118Te 52 66 117.905828(16) 6.00(2) d EC 118Sb 0+
    119Te 52 67 118.906404(9) 16.05(5) h β+ 119Sb 1/2+
    119mTe 260.96(5) keV 4.70(4) d β+ (99.99%) 119Sb 11/2−
    IT (.008%) 119Te
    120Te 52 68 119.90402(1)
    Observationally Stable[n 9]
    0+ 9(1)×10−4
    121Te 52 69 120.904936(28) 19.16(5) d β+ 121Sb 1/2+
    121mTe 293.991(22) keV 154(7) d IT (88.6%) 121Te 11/2−
    β+ (11.4%) 121Sb
    122Te 52 70 121.9030439(16) Stable 0+ 0.0255(12)
    123Te 52 71 122.9042700(16) Observationally Stable[n 10] 1/2+ 0.0089(3)
    123mTe 247.47(4) keV 119.2(1) d IT 123Te 11/2−
    124Te 52 72 123.9028179(16) Stable 0+ 0.0474(14)
    125Te[n 11] 52 73 124.9044307(16) Stable 1/2+ 0.0707(15)
    125mTe 144.772(9) keV 57.40(15) d IT 125Te 11/2−
    126Te 52 74 125.9033117(16) Stable 0+ 0.1884(25)
    127Te[n 11] 52 75 126.9052263(16) 9.35(7) h β 127I 3/2+
    127mTe 88.26(8) keV 109(2) d IT (97.6%) 127Te 11/2−
    β (2.4%) 127I
    128Te[n 11][n 12] 52 76 127.9044631(19) 2.2(3)×1024 y[n 13] ββ 128Xe 0+ 0.3174(8)
    128mTe 2790.7(4) keV 370(30) ns 10+
    129Te[n 11] 52 77 128.9065982(19) 69.6(3) min β 129I 3/2+
    129mTe 105.50(5) keV 33.6(1) d β (36%) 129I 11/2−
    IT (64%) 129Te
    130Te[n 11][n 12] 52 78 129.9062244(21) 8.2(0.2 (stat.), 0.6 (syst.))×1020 y ββ 130Xe 0+ 0.3408(62)
    130m1Te 2146.41(4) keV 115(8) ns (7)−
    130m2Te 2661(7) keV 1.90(8) µs (10+)
    130m3Te 4375.4(18) keV 261(33) ns
    131Te[n 11] 52 79 130.9085239(21) 25.0(1) min β 131I 3/2+
    131mTe 182.250(20) keV 30(2) h β (77.8%) 131I 11/2−
    IT (22.2%) 131Te
    132Te[n 11] 52 80 131.908553(7) 3.204(13) d β 132I 0+
    133Te 52 81 132.910955(26) 12.5(3) min β 133I (3/2+)
    133mTe 334.26(4) keV 55.4(4) min β (82.5%) 133I (11/2−)
    IT (17.5%) 133Te
    134Te 52 82 133.911369(11) 41.8(8) min β 134I 0+
    134mTe 1691.34(16) keV 164.1(9) ns 6+
    135Te[n 14] 52 83 134.91645(10) 19.0(2) s β 135I (7/2−)
    135mTe 1554.88(17) keV 510(20) ns (19/2−)
    136Te 52 84 135.92010(5) 17.63(8) s β (98.7%) 136I 0+
    β, n (1.3%) 135I
    137Te 52 85 136.92532(13) 2.49(5) s β (97.01%) 137I 3/2−#
    β, n (2.99%) 136I
    138Te 52 86 137.92922(22)# 1.4(4) s β (93.7%) 138I 0+
    β, n (6.3%) 137I
    139Te 52 87 138.93473(43)# 500 ms
    [>300 ns]#
    β 139I 5/2−#
    β, n 138I
    140Te 52 88 139.93885(32)# 300 ms
    [>300 ns]#
    β 140I 0+
    β, n 139I
    141Te 52 89 140.94465(43)# 100 ms
    [>300 ns]#
    β 141I 5/2−#
    β, n 140I
    142Te 52 90 141.94908(64)# 50 ms
    [>300 ns]#
    β 142I 0+
    This table header & footer:
    1. ^ mTe – Excited nuclear isomer.
    2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
    3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
    4. age of universe
      .
    5. ^ a b # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
    6. ^ Modes of decay:
      EC: Electron capture
      IT:
      Isomeric transition
      n: Neutron emission
      p: Proton emission
    7. ^ Bold symbol as daughter – Daughter product is stable.
    8. ^ ( ) spin value – Indicates spin with weak assignment arguments.
    9. ^ Believed to undergo β+β+ decay to 120Sn with a half-life over 2.2×1016 years
    10. ^ Believed to undergo β+ decay to 123Sb with a half-life over 9.2×1016 years
    11. ^
      Fission product
    12. ^ a b Primordial radionuclide
    13. ^ Longest measured half-life of any nuclide
    14. fission product, responsible for the iodine pit as precursor of 135Xe
      via 135I

    References

    1. .
    2. .
    3. ^ "Standard Atomic Weights: Tellurium". CIAAW. 1969.
    4. ISSN 1365-3075
      .
    5. ^ Many isotopes are expected to have longer half-lives, but decay has not yet been observed in these, allowing only a lower limit to be placed on their half-lives
    6. ^
      S2CID 119523039
      .
    7. .