Isotopes of neodymium

Source: Wikipedia, the free encyclopedia.
Isotopes of neodymium (60Nd)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
142Nd 27.2%
stable
143Nd 12.2% stable
144Nd 23.8% 2.29×1015 y α
140Ce
145Nd 8.3% stable
146Nd 17.2% stable
148Nd 5.80% stable
150Nd 5.60% 6.7×1018 y ββ
150Sm
talk
  • edit
  • Naturally occurring

    meta states
    with the most stable being 139mNd (t1/2 5.5 hours), 135mNd (t1/2 5.5 minutes) and 133m1Nd (t1/2 ~70 seconds).

    The primary

    positron decay, and the primary mode after is beta decay. The primary decay products before 142Nd are praseodymium isotopes and the primary products after are promethium
    isotopes.

    Neodymium isotopes as fission products

    Neodymium is one of the more common

    fission products that results from the splitting of uranium-233, uranium-235, plutonium-239 and plutonium-241. The distribution of resulting neodymium isotopes is distinctly different than those found in crustal rock formation on Earth. One of the methods used to verify that the Oklo Fossil Reactors in Gabon had produced a natural nuclear fission reactor some two billion years before present was to compare the relative abundances of neodymium isotopes found at the reactor site with those found elsewhere on Earth.[4][5][6]

    List of isotopes

    Nuclide
    [n 1]
    Z N Isotopic mass (Da)
    [n 2][n 3]
    Half-life
    [n 4][n 5]
    Decay
    mode
    [n 6]
    Daughter
    isotope

    [n 7]
    Natural abundance (mole fraction)
    Excitation energy[n 5] Normal proportion Range of variation
    124Nd 60 64 123.95223(64)# 500# ms 0+
    125Nd 60 65 124.94888(43)# 600(150) ms 5/2(+#)
    126Nd 60 66 125.94322(43)# 1# s [>200 ns] β+ 126Pr 0+
    127Nd 60 67 126.94050(43)# 1.8(4) s β+ 127Pr 5/2+#
    β+, p (rare) 126Ce
    128Nd 60 68 127.93539(21)# 5# s β+ 128Pr 0+
    β+, p (rare) 127Ce
    129Nd 60 69 128.93319(22)# 4.9(2) s β+ 129Pr 5/2+#
    β+, p (rare) 128Ce
    130Nd 60 70 129.92851(3) 21(3) s β+ 130Pr 0+
    131Nd 60 71 130.92725(3) 33(3) s β+ 131Pr (5/2)(+#)
    β+, p (rare) 130Ce
    132Nd 60 72 131.923321(26) 1.56(10) min β+ 132Pr 0+
    133Nd 60 73 132.92235(5) 70(10) s β+ 133Pr (7/2+)
    133m1Nd 127.97(11) keV ~70 s β+ 133Pr (1/2)+
    133m2Nd 176.10(10) keV ~300 ns (9/2–)
    134Nd 60 74 133.918790(13) 8.5(15) min β+ 134Pr 0+
    134mNd 2293.1(4) keV 410(30) µs (8)–
    135Nd 60 75 134.918181(21) 12.4(6) min β+ 135Pr 9/2(–)
    135mNd 65.0(2) keV 5.5(5) min β+ 135Pr (1/2+)
    136Nd 60 76 135.914976(13) 50.65(33) min β+ 136Pr 0+
    137Nd 60 77 136.914567(12) 38.5(15) min β+ 137Pr 1/2+
    137mNd 519.43(17) keV 1.60(15) s
    IT
    137Nd (11/2–)
    138Nd 60 78 137.911950(13) 5.04(9) h β+ 138Pr 0+
    138mNd 3174.9(4) keV 410(50) ns (10+)
    139Nd 60 79 138.911978(28) 29.7(5) min β+ 139Pr 3/2+
    139m1Nd 231.15(5) keV 5.50(20) h β+ (88.2%) 139Pr 11/2–
    IT (11.8%) 139Nd
    139m2Nd 2570.9+X keV ≥141 ns
    140Nd 60 80 139.90955(3) 3.37(2) d EC 140Pr 0+
    140mNd 2221.4(1) keV 600(50) µs 7–
    141Nd 60 81 140.909610(4) 2.49(3) h β+ 141Pr 3/2+
    141mNd 756.51(5) keV 62.0(8) s IT (99.95%) 141Nd 11/2–
    β+ (.05%) 141Pr
    142Nd 60 82 141.9077233(25) Stable 0+ 0.272(5) 0.2680–0.2730
    143Nd[n 9] 60 83 142.9098143(25)
    Observationally Stable[n 10]
    7/2− 0.122(2) 0.1212–0.1232
    144Nd[n 9][n 11] 60 84 143.9100873(25) 2.29(16)×1015 y α 140Ce 0+ 0.238(3) 0.2379–0.2397
    145Nd[n 9] 60 85 144.9125736(25) Observationally Stable[n 12] 7/2− 0.083(1) 0.0823–0.0835
    146Nd[n 9] 60 86 145.9131169(25) Observationally Stable[n 13] 0+ 0.172(3) 0.1706–0.1735
    147Nd[n 9] 60 87 146.9161004(25) 10.98(1) d β 147Pm 5/2−
    148Nd[n 9] 60 88 147.916893(3) Observationally Stable[n 14] 0+ 0.057(1) 0.0566–0.0578
    149Nd[n 9] 60 89 148.920149(3) 1.728(1) h β 149Pm 5/2−
    150Nd[n 9][n 11][n 15] 60 90 149.920891(3) 6.7(7)×1018 y ββ 150Sm 0+ 0.056(2) 0.0553–0.0569
    151Nd 60 91 150.923829(3) 12.44(7) min β 151Pm 3/2+
    152Nd 60 92 151.924682(26) 11.4(2) min β 152Pm 0+
    153Nd 60 93 152.927698(29) 31.6(10) s β 153Pm (3/2)−
    154Nd 60 94 153.92948(12) 25.9(2) s β 154Pm 0+
    154m1Nd 480(150)# keV 1.3(5) µs
    154m2Nd 1349(10) keV >1 µs (5−)
    155Nd 60 95 154.93293(16)# 8.9(2) s β 155Pm 3/2−#
    156Nd 60 96 155.93502(22) 5.49(7) s β 156Pm 0+
    156mNd 1432(5) keV 135 ns 5−
    157Nd 60 97 156.93903(21)# 1.17(4) s[9] β 157Pm 5/2−#
    158Nd 60 98 157.94160(43)# 700# ms [>300 ns] β 158Pm 0+
    159Nd 60 99 158.94609(54)# 500# ms β 159Pm 7/2+#
    160Nd 60 100 159.94909(64)# 300# ms β 160Pm 0+
    161Nd 60 101 160.95388(75)# 200# ms β 161Pm 1/2−#
    This table header & footer:
    1. ^ mNd – Excited nuclear isomer.
    2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
    3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
    4. age of universe
      .
    5. ^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
    6. ^ Modes of decay:
      EC: Electron capture
      IT:
      Isomeric transition


      p: Proton emission
    7. ^ Bold symbol as daughter – Daughter product is stable.
    8. ^ ( ) spin value – Indicates spin with weak assignment arguments.
    9. ^ a b c d e f g h Fission product
    10. ^ Believed to undergo α decay to 139Ce with a half-life over 2.8×1019 years[1][7][8]
    11. ^ a b Primordial radionuclide
    12. ^ Believed to undergo α decay to 141Ce with a half-life of over 6.1×1019 years[1][7][8]
    13. ^ Believed to undergo ββ decay to 146Sm or α decay to 142Ce with a half-life of over 3.3×1021 years[1][7][8]
    14. ^ Believed to undergo ββ decay to 148Sm or α decay to 144Ce with a half-life of over 1.2×1019 years[1][7][8]
    15. ^ Predicted to be capable of undergoing triple beta decay and quadruple beta decay with very long partial half-lives

    References

    1. ^ .
    2. ^ "Standard Atomic Weights: Neodymium". CIAAW. 2005.
    3. ISSN 1365-3075
      .
    4. .
    5. ^ "Oklo's Natural Nuclear Reactors". 24 October 2020.
    6. ^ "The Implications of the Oklo Phenomenon on the Constancy of Radiometric Decay Rates".
    7. ^ a b c d Sokur, N.V.; Belli, P.; Bernabei, R.; Boiko, R.S.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F.A.; Incicchitti, A.; Kasperovych, D.V.; Kobychev, V.V.; Laubenstein, M.; Leoncini, A.; Merlo, V.; Polischuk, O.G.; Tretyak, V.I. (11 July 2023). Alpha decay of naturally occurring neodymium isotopes. XII International Conference on New Frontiers in Physics.
    8. ^
      S2CID 201664098
      .
    9. .