Isotopes of lead

Source: Wikipedia, the free encyclopedia.
Isotopes of lead (82Pb)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
202Pb synth 5.25×104 y ε
202Tl
204Pb 1.40%
stable
205Pb trace 1.73×107 y ε
205Tl
206Pb 24.1% stable
207Pb 22.1% stable
208Pb 52.4% stable
209Pb trace 3.253 h
β
209Bi
210Pb trace 22.20 y β
210Bi
211Pb trace 36.1 min β
211Bi
212Pb trace 10.64 h β
212Bi
214Pb trace 26.8 min β
214Bi
Isotopic abundances vary greatly by sample
talk
  • edit
  • neptunium series, terminates with the thallium isotope 205Tl. The three series terminating in lead represent the decay chain products of long-lived primordial 238U, 235U, and 232Th. Each isotope also occurs, to some extent, as primordial isotopes that were made in supernovae, rather than radiogenically as daughter products. The fixed ratio of lead-204 to the primordial amounts of the other lead isotopes may be used as the baseline to estimate the extra amounts of radiogenic lead present in rocks as a result of decay from uranium and thorium. (See lead–lead dating and uranium–lead dating
    .)

    The longest-lived

    radioisotopes are 205Pb with a half-life of 17.3 million years and 202Pb with a half-life of 52,500 years. A shorter-lived naturally occurring radioisotope, 210Pb with a half-life of 22.2 years, is useful for studying the sedimentation chronology of environmental samples on time scales shorter than 100 years.[5]

    The relative abundances of the four stable isotopes are approximately 1.5%, 24%, 22%, and 52.5%, combining to give a standard atomic weight (abundance-weighted average of the stable isotopes) of 207.2(1). Lead is the element with the heaviest stable isotope, 208Pb. (The more massive 209Bi, long considered to be stable, actually has a half-life of 2.01×1019 years.) 208Pb is also a doubly magic isotope, as it has 82 protons and 126 neutrons.[6] It is the heaviest doubly magic nuclide known. A total of 43 lead isotopes are now known, including very unstable synthetic species.

    The four primordial isotopes of lead are all

    observationally stable, meaning that they are predicted to undergo radioactive decay but no decay has been observed yet. These four isotopes are predicted to undergo alpha decay and become isotopes of mercury
    which are themselves radioactive or observationally stable.

    In its fully ionized state, the beta decay of isotope 210Pb does not release a free electron; the generated electron is instead captured by the atom's empty orbitals.[7]

    List of isotopes

    Nuclide[8]
    [n 1]
    Historic
    name
    Z N Isotopic mass (Da)[9]
    [n 2][n 3]
    Half-life
    Decay
    mode
    [n 4]
    Daughter
    isotope

    [n 5][n 6]
    Natural abundance (mole fraction)
    Excitation energy[n 8] Normal proportion Range of variation
    178Pb 82 96 178.003830(26) 0.23(15) ms α 174Hg 0+
    179Pb 82 97 179.00215(21)# 3.9(1.1) ms α 175Hg (9/2−)
    180Pb 82 98 179.997918(22) 4.5(11) ms α 176Hg 0+
    181Pb 82 99 180.99662(10) 45(20) ms α (98%) 177Hg (9/2−)
    β+ (2%) 181Tl
    182Pb 82 100 181.992672(15) 60(40) ms
    [55(+40−35) ms]
    α (98%) 178Hg 0+
    β+ (2%) 182Tl
    183Pb 82 101 182.99187(3) 535(30) ms α (94%) 179Hg (3/2−)
    β+ (6%) 183Tl
    183mPb 94(8) keV 415(20) ms α 179Hg (13/2+)
    β+ (rare) 183Tl
    184Pb 82 102 183.988142(15) 490(25) ms α 180Hg 0+
    β+ (rare) 184Tl
    185Pb 82 103 184.987610(17) 6.3(4) s α 181Hg 3/2−
    β+ (rare) 185Tl
    185mPb 60(40)# keV 4.07(15) s α 181Hg 13/2+
    β+ (rare) 185Tl
    186Pb 82 104 185.984239(12) 4.82(3) s α (56%) 182Hg 0+
    β+ (44%) 186Tl
    187Pb 82 105 186.983918(9) 15.2(3) s β+ 187Tl (3/2−)
    α 183Hg
    187mPb 11(11) keV 18.3(3) s β+ (98%) 187Tl (13/2+)
    α (2%) 183Hg
    188Pb 82 106 187.980874(11) 25.5(1) s β+ (91.5%) 188Tl 0+
    α (8.5%) 184Hg
    188m1Pb 2578.2(7) keV 830(210) ns (8−)
    188m2Pb 2800(50) keV 797(21) ns
    189Pb 82 107 188.98081(4) 51(3) s β+ 189Tl (3/2−)
    189m1Pb 40(30)# keV 50.5(2.1) s β+ (99.6%) 189Tl 13/2+
    α (.4%) 185Hg
    189m2Pb 2475(30)# keV 26(5) μs (10)+
    190Pb 82 108 189.978082(13) 71(1) s β+ (99.1%) 190Tl 0+
    α (.9%) 186Hg
    190m1Pb 2614.8(8) keV 150 ns (10)+
    190m2Pb 2618(20) keV 25 μs (12+)
    190m3Pb 2658.2(8) keV 7.2(6) μs (11)−
    191Pb 82 109 190.97827(4) 1.33(8) min β+ (99.987%) 191Tl (3/2−)
    α (.013%) 187Hg
    191mPb 20(50) keV 2.18(8) min β+ (99.98%) 191Tl 13/2(+)
    α (.02%) 187Hg
    192Pb 82 110 191.975785(14) 3.5(1) min β+ (99.99%) 192Tl 0+
    α (.0061%) 188Hg
    192m1Pb 2581.1(1) keV 164(7) ns (10)+
    192m2Pb 2625.1(11) keV 1.1(5) μs (12+)
    192m3Pb 2743.5(4) keV 756(21) ns (11)−
    193Pb 82 111 192.97617(5) 5# min β+ 193Tl (3/2−)
    193m1Pb 130(80)# keV 5.8(2) min β+ 193Tl 13/2(+)
    193m2Pb 2612.5(5)+X keV 135(+25−15) ns (33/2+)
    194Pb 82 112 193.974012(19) 12.0(5) min β+ (100%) 194Tl 0+
    α (7.3×10−6%) 190Hg
    195Pb 82 113 194.974542(25) ~15 min β+ 195Tl 3/2#-
    195m1Pb 202.9(7) keV 15.0(12) min β+ 195Tl 13/2+
    195m2Pb 1759.0(7) keV 10.0(7) μs 21/2−
    196Pb 82 114 195.972774(15) 37(3) min β+ 196Tl 0+
    α (<3×10−5%) 192Hg
    196m1Pb 1049.20(9) keV <100 ns 2+
    196m2Pb 1738.27(12) keV <1 μs 4+
    196m3Pb 1797.51(14) keV 140(14) ns 5−
    196m4Pb 2693.5(5) keV 270(4) ns (12+)
    197Pb 82 115 196.973431(6) 8.1(17) min β+ 197Tl 3/2−
    197m1Pb 319.31(11) keV 42.9(9) min β+ (81%) 197Tl 13/2+
    IT (19%) 197Pb
    α (3×10−4%) 193Hg
    197m2Pb 1914.10(25) keV 1.15(20) μs 21/2−
    198Pb 82 116 197.972034(16) 2.4(1) h β+ 198Tl 0+
    198m1Pb 2141.4(4) keV 4.19(10) μs (7)−
    198m2Pb 2231.4(5) keV 137(10) ns (9)−
    198m3Pb 2820.5(7) keV 212(4) ns (12)+
    199Pb 82 117 198.972917(28) 90(10) min β+ 199Tl 3/2−
    199m1Pb 429.5(27) keV 12.2(3) min IT (93%) 199Pb (13/2+)
    β+ (7%) 199Tl
    199m2Pb 2563.8(27) keV 10.1(2) μs (29/2−)
    200Pb 82 118 199.971827(12) 21.5(4) h EC 200Tl 0+
    201Pb 82 119 200.972885(24) 9.33(3) h EC (99%) 201Tl 5/2−
    β+ (1%)
    201m1Pb 629.14(17) keV 61(2) s 13/2+
    201m2Pb 2718.5+X keV 508(5) ns (29/2−)
    202Pb 82 120 201.972159(9) 5.25(28)×104 y EC 202Tl 0+
    202m1Pb 2169.83(7) keV 3.54(2) h IT (90.5%) 202Pb 9−
    β+ (9.5%) 202Tl
    202m2Pb 4142.9(11) keV 110(5) ns (16+)
    202m3Pb 5345.9(13) keV 107(5) ns (19−)
    203Pb 82 121 202.973391(7) 51.873(9) h EC 203Tl 5/2−
    203m1Pb 825.20(9) keV 6.21(8) s IT 203Pb 13/2+
    203m2Pb 2949.47(22) keV 480(7) ms 29/2−
    203m3Pb 2923.4+X keV 122(4) ns (25/2−)
    204Pb[n 9] 82 122 203.9730436(13)
    Observationally stable[n 10]
    0+ 0.014(1) 0.0000–0.0158[10]
    204m1Pb 1274.00(4) keV 265(10) ns 4+
    204m2Pb 2185.79(5) keV 67.2(3) min 9−
    204m3Pb 2264.33(4) keV 0.45(+10−3) μs 7−
    205Pb 82 123 204.9744818(13) 1.73(7)×107 y EC 205Tl 5/2−
    205m1Pb 2.329(7) keV 24.2(4) μs 1/2−
    205m2Pb 1013.839(13) keV 5.55(2) ms 13/2+
    205m3Pb 3195.7(5) keV 217(5) ns 25/2−
    206Pb[n 9][n 11] Radium G[11] 82 124 205.9744653(13) Observationally stable[n 12][12] 0+ 0.241(1) 0.0190–0.8673[10]
    206m1Pb 2200.14(4) keV 125(2) μs 7−
    206m2Pb 4027.3(7) keV 202(3) ns 12+
    207Pb[n 9][n 13] Actinium D 82 125 206.9758969(13) Observationally stable[n 14][12] 1/2− 0.221(1) 0.0035–0.2351[10]
    207mPb 1633.368(5) keV 806(6) ms IT 207Pb 13/2+
    208Pb[n 15] Thorium D 82 126 207.9766521(13) Observationally stable[n 16][12] 0+ 0.524(1) 0.0338–0.9775[10]
    208mPb 4895(2) keV 500(10) ns 10+
    209Pb 82 127 208.9810901(19) 3.253(14) h β 209Bi 9/2+ Trace[n 17]
    210Pb Radium D
    Radiolead
    Radio-lead
    82 128 209.9841885(16) 22.20(22) y β (100%) 210Bi 0+ Trace[n 18]
    α (1.9×10−6%) 206Hg
    210mPb 1278(5) keV 201(17) ns 8+
    211Pb Actinium B 82 129 210.9887370(29) 36.1(2) min β 211Bi 9/2+ Trace[n 19]
    212Pb Thorium B 82 130 211.9918975(24) 10.64(1) h β 212Bi 0+ Trace[n 20]
    212mPb 1335(10) keV 6.0(0.8) μs IT 212Pb (8+)
    213Pb 82 131 212.996581(8) 10.2(3) min β 213Bi (9/2+) Trace[n 17]
    214Pb Radium B 82 132 213.9998054(26) 26.8(9) min β 214Bi 0+ Trace[n 18]
    214mPb 1420(20) keV 6.2(0.3) μs IT 212Pb 8+#
    215Pb 82 133 215.004660(60) 2.34(0.19) min β 215Bi 9/2+#
    216Pb 82 134 216.008030(210)# 1.65(0.2) min β 216Bi 0+
    216mPb 1514(20) keV 400(40) ns IT 216Pb 8+#
    217Pb 82 135 217.013140(320)# 20(5) s β 217Bi 9/2+#
    218Pb 82 136 218.016590(320)# 15(7) s β 218Bi 0+
    This table header & footer:
    1. ^ mPb – Excited nuclear isomer.
    2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
    3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
    4. ^ Modes of decay:
      EC: Electron capture
      IT:
      Isomeric transition
    5. ^ Bold italics symbol as daughter – Daughter product is nearly stable.
    6. ^ Bold symbol as daughter – Daughter product is stable.
    7. ^ ( ) spin value – Indicates spin with weak assignment arguments.
    8. ^ a b # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
    9. ^ a b c Used in lead–lead dating
    10. ^ Believed to undergo α decay to 200Hg with a half-life over 1.4×1020 years
    11. Radium or Uranium series
      )
    12. ^ Experimental lower bound is years; the theoretical lifetime for α decay to 202Hg is years.
    13. Actinium series
      )
    14. ^ Experimental lower bound is years; the theoretical lifetime for α decay to 203Hg is years.
    15. Thorium series
      )
    16. ^ Experimental lower bound is years; the theoretical lifetime for α decay to 204Hg is years.
    17. ^
      237Np
    18. ^ a b Intermediate decay product of 238U
    19. ^ Intermediate decay product of 235U
    20. ^ Intermediate decay product of 232Th

    Lead-206

    206Pb is the final step in the decay chain of 238U, the "radium series" or "uranium series". In a closed system, over time, a given mass of 238U will decay in a sequence of steps culminating in 206Pb. The production of intermediate products eventually reaches an equilibrium (though this takes a long time, as the half-life of 234U is 245,500 years). Once this stabilized system is reached, the ratio of 238U to 206Pb will steadily decrease, while the ratios of the other intermediate products to each other remain constant.

    Like most radioisotopes found in the radium series, 206Pb was initially named as a variation of radium, specifically radium G. It is the decay product of both 210Po (historically called radium F) by alpha decay, and the much rarer 206Tl (radium EII) by beta decay.

    Lead-206 has been proposed for use in

    fast breeder nuclear fission reactor coolant over the use of natural lead mixture (which also includes other stable lead isotopes) as a mechanism to improve neutron economy and greatly suppress unwanted production of highly radioactive byproducts.[13]

    Lead-204, -207, and -208

    204Pb is entirely

    radiogenic in origin,[14]
    allowing various uranium and thorium dating schemes to be used to estimate the age of rocks (time since their formation) based on the relative abundance of lead-204 to other isotopes. 207Pb is the end of the .

    208Pb is the end of the

    doubly magic nucleus, as Z = 82 and N = 126 correspond to closed nuclear shells.[16] As a consequence of this particularly stable configuration, its neutron capture cross section is very low (even lower than that of deuterium in the thermal spectrum), making it of interest for lead-cooled fast reactors
    .

    Lead-212

    212Pb-containing

    radiopharmaceuticals have been trialed as therapeutic agents for the experimental cancer treatment targeted alpha-particle therapy.[17]

    References

    1. .
    2. ^ Meija et al. 2016.
    3. ^ "Standard Atomic Weights: Lead". CIAAW. 2020.
    4. ISSN 1365-3075
      .
    5. ^ Jeter, Hewitt W. (March 2000). "Determining the Ages of Recent Sediments Using Measurements of Trace Radioactivity" (PDF). Terra et Aqua (78): 21–28. Archived from the original (PDF) on March 4, 2016. Retrieved October 23, 2019.
    6. S2CID 121966707
      .
    7. PMID 9954244. Retrieved 2016-11-20. As can be seen in Table I (187Re, 210Pb, 227Ac, and 241Pu), some continuum-state decays are energetically forbidden when the atom is fully ionized. This is because the atomic binding energies liberated by ionization, i.e., the total electron binding in the neutral atom, Bn, increases with Z. If [the decay energy
      ] Qn<Bn(Z+1)-Bn(Z), the continuum-state β decay is energetically forbidden.
    8. .
    9. .
    10. ^
      CIAAW
      . 2020.
    11. .
    12. ^ .
    13. .
    14. ^ a b Woods, G.D. (November 2014). Lead isotope analysis: Removal of 204Hg isobaric interference from 204Pb using ICP-QQQ in MS/MS mode (PDF) (Report). Stockport, UK: Agilent Technologies.
    15. S2CID 98821122
      .
    16. .
    17. .

    Sources

    Isotope masses from:

    Half-life, spin, and isomer data selected from the following sources.