Isotopes of ruthenium

Source: Wikipedia, the free encyclopedia.
Isotopes of ruthenium (44Ru)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
96Ru 5.54%
stable
97Ru synth 2.9 d ε
97Tc
γ
98Ru 1.87% stable
99Ru 12.8% stable
100Ru 12.6% stable
101Ru 17.1% stable
102Ru 31.6% stable
103Ru synth 39.26 d
β
103Rh
γ
104Ru 18.6% stable
106Ru synth 373.59 d β
106Rh
talk
  • edit
  • Naturally occurring

    radioisotopes, the most stable are 106Ru, with a half-life
    of 373.59 days; 103Ru, with a half-life of 39.26 days and 97Ru, with a half-life of 2.9 days.

    Twenty-four other radioisotopes have been characterized with

    u
    (87Ru) to 119.95 u (120Ru). Most of these have half-lives that are less than five minutes, except 94Ru (half-life: 51.8 minutes), 95Ru (half-life: 1.643 hours), and 105Ru (half-life: 4.44 hours).

    The primary

    beta emission. The primary decay product before 102Ru is technetium and the primary product after is rhodium
    .

    Because of the very high volatility of ruthenium tetroxide (RuO
    4
    ) ruthenium radioactive isotopes with their relative short half-life are considered as the second most hazardous gaseous isotopes after iodine-131 in case of release by a nuclear accident.[4][5][6] The two most important isotopes of ruthenium in case of nuclear accident are these with the longest half-life: 103Ru (39.26 days) and 106Ru (373.59 days).[5]

    List of isotopes

    Nuclide
    [n 1]
    Z N Isotopic mass (Da)
    [n 2][n 3]
    Half-life
    [n 4]
    Decay
    mode
    [n 5]
    Daughter
    isotope

    [n 6]
    Natural abundance (mole fraction)
    Excitation energy[n 4] Normal proportion Range of variation
    87Ru 44 43 86.94918(64)# 50# ms [>1.5 µs] β+ 87Tc 1/2−#
    88Ru 44 44 87.94026(43)# 1.3(3) s [1.2(+3−2) s] β+ 88Tc 0+
    89Ru 44 45 88.93611(54)# 1.38(11) s β+ 89Tc (7/2)(+#)
    90Ru 44 46 89.92989(32)# 11.7(9) s β+ 90Tc 0+
    91Ru 44 47 90.92629(63)# 7.9(4) s β+ 91Tc (9/2+)
    91mRu 80(300)# keV 7.6(8) s β+ (>99.9%) 91Tc (1/2−)
    IT
    (<.1%)
    91Ru
    β+, p (<.1%) 90Mo
    92Ru 44 48 91.92012(32)# 3.65(5) min β+ 92Tc 0+
    93Ru 44 49 92.91705(9) 59.7(6) s β+ 93Tc (9/2)+
    93m1Ru 734.40(10) keV 10.8(3) s β+ (78%) 93Tc (1/2)−
    IT (22%) 93Ru
    β+, p (.027%) 92Mo
    93m2Ru 2082.6(9) keV 2.20(17) µs (21/2)+
    94Ru 44 50 93.911360(14) 51.8(6) min β+ 94Tc 0+
    94mRu 2644.55(25) keV 71(4) µs (8+)
    95Ru 44 51 94.910413(13) 1.643(14) h β+ 95Tc 5/2+
    96Ru 44 52 95.907598(8)
    Observationally Stable[n 8]
    0+ 0.0554(14)
    97Ru 44 53 96.907555(9) 2.791(4) d β+ 97mTc 5/2+
    98Ru 44 54 97.905287(7) Stable 0+ 0.0187(3)
    99Ru 44 55 98.9059393(22) Stable 5/2+ 0.1276(14)
    100Ru 44 56 99.9042195(22) Stable 0+ 0.1260(7)
    101Ru[n 9] 44 57 100.9055821(22) Stable 5/2+ 0.1706(2)
    101mRu 527.56(10) keV 17.5(4) µs 11/2−
    102Ru[n 9] 44 58 101.9043493(22) Stable 0+ 0.3155(14)
    103Ru[n 9] 44 59 102.9063238(22) 39.26(2) d β 103Rh 3/2+
    103mRu 238.2(7) keV 1.69(7) ms IT 103Ru 11/2−
    104Ru[n 9] 44 60 103.905433(3) Observationally Stable[n 10] 0+ 0.1862(27)
    105Ru[n 9] 44 61 104.907753(3) 4.44(2) h β 105Rh 3/2+
    106Ru[n 9] 44 62 105.907329(8) 373.59(15) d β 106Rh 0+
    107Ru 44 63 106.90991(13) 3.75(5) min β 107Rh (5/2)+
    108Ru 44 64 107.91017(12) 4.55(5) min β 108Rh 0+
    109Ru 44 65 108.91320(7) 34.5(10) s β 109Rh (5/2+)#
    110Ru 44 66 109.91414(6) 11.6(6) s β 110Rh 0+
    111Ru 44 67 110.91770(8) 2.12(7) s β 111Rh (5/2+)
    112Ru 44 68 111.91897(8) 1.75(7) s β 112Rh 0+
    113Ru 44 69 112.92249(8) 0.80(5) s β 113Rh (5/2+)
    113mRu 130(18) keV 510(30) ms (11/2−)
    114Ru 44 70 113.92428(25)# 0.53(6) s β (>99.9%) 114Rh 0+
    β, n (<.1%) 113Rh
    115Ru 44 71 114.92869(14) 740(80) ms β (>99.9%) 115Rh
    β, n (<.1%) 114Rh
    116Ru 44 72 115.93081(75)# 400# ms [>300 ns] β 116Rh 0+
    117Ru 44 73 116.93558(75)# 300# ms [>300 ns] β 117Rh
    118Ru 44 74 117.93782(86)# 200# ms [>300 ns] β 118Rh 0+
    119Ru 44 75 118.94284(75)# 170# ms [>300 ns]
    120Ru 44 76 119.94531(86)# 80# ms [>300 ns] 0+
    This table header & footer:
    1. ^ mRu – Excited nuclear isomer.
    2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
    3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
    4. ^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
    5. ^ Modes of decay:
      IT:
      Isomeric transition
      n: Neutron emission
      p: Proton emission
    6. ^ Bold symbol as daughter – Daughter product is stable.
    7. ^ ( ) spin value – Indicates spin with weak assignment arguments.
    8. ^ Believed to undergo β+β+ decay to 96Mo with a half-life over 6.7×1016 years
    9. ^
      Fission product
    10. ^ Believed to undergo ββ decay to 104Pd
    • Geologically exceptional samples are known in which the isotopic composition lies outside the reported range. The uncertainty in the atomic mass may exceed the stated value for such specimens.[citation needed]
    • In September 2017 an estimated amount of 100 to 300 TBq (0.3 to 1 g) of 106Ru was released in Russia, probably in the Ural region. It was, after ruling out release from a reentering satellite, concluded that the source is to be found either in nuclear fuel cycle facilities or radioactive source production. In France levels up to 0.036mBq/m3 of air were measured. It is estimated that over distances of the order of a few tens of kilometres around the location of the release levels may exceed the limits for non-dairy foodstuffs.[7]
    Ruthenium-96

    References

    1. .
    2. ^ "Standard Atomic Weights: Ruthenium". CIAAW. 1983.
    3. ISSN 1365-3075
      .
    4. ^ Ronneau, C., Cara, J., & Rimski-Korsakov, A. (1995). Oxidation-enhanced emission of ruthenium from nuclear fuel. Journal of Environmental Radioactivity, 26(1), 63-70.
    5. ^ a b Backman, U., Lipponen, M., Auvinen, A., Jokiniemi, J., & Zilliacus, R. (2004). Ruthenium behaviour in severe nuclear accident conditions. Final report (No. NKS–100). Nordisk Kernesikkerhedsforskning.
    6. ^ Beuzet, E., Lamy, J. S., Perron, H., Simoni, E., & Ducros, G. (2012). Ruthenium release modelling in air and steam atmospheres under severe accident conditions using the MAAP4 code[dead link]. Nuclear Engineering and Design, 246, 157-162.
    7. ^ [1] Detection of ruthenium 106 in France and in Europe, IRSN France (9 Nov 2017)