Lithium chloride

Source: Wikipedia, the free encyclopedia.
Lithium chloride
Unit cell model of lithium chloride
Sample of lithium chloride in a watch glass

__ Li+     __ Cl
Names
Preferred IUPAC name
Lithium chloride
Systematic IUPAC name
Lithium(1+) chloride
Identifiers
3D model (
JSmol
)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard
100.028.375 Edit this at Wikidata
EC Number
  • 231-212-3
MeSH Lithium+chloride
RTECS number
  • OJ5950000
UNII
UN number 2056
  • InChI=1S/ClH.Li/h1H;/q;+1/p-1 ☒N
    Key: KWGKDLIKAYFUFQ-UHFFFAOYSA-M ☒N
  • InChI=1S/ClH.Li/h1H;/q;+1/p-1
    Key: KWGKDLIKAYFUFQ-UHFFFAOYSA-M
  • InChI=1/ClH.Li/h1H;/q;+1/p-1
    Key: KWGKDLIKAYFUFQ-REWHXWOFAB
  • [Li+].[Cl-]
Properties
LiCl
Molar mass 42.39 g·mol−1
Appearance white solid
hygroscopic
, sharp
Density 2.068 g/cm3
Melting point 605–614 °C (1,121–1,137 °F; 878–887 K)
Boiling point 1,382 °C (2,520 °F; 1,655 K)
68.29 g/100 mL (0 °C)
74.48 g/100 mL (10 °C)
84.25 g/100 mL (25 °C)
88.7 g/100 mL (40 °C)
123.44 g/100 mL (100 °C)[1]
Solubility soluble in
1-propanol[1]
Solubility in methanol 45.2 g/100 g (0 °C)
43.8 g/100 g (20 °C)
42.36 g/100 g (25 °C)[2]
44.6 g/100 g (60 °C)[1]
Solubility in ethanol 14.42 g/100 g (0 °C)
24.28 g/100 g (20 °C)
25.1 g/100 g (30 °C)
23.46 g/100 g (60 °C)[2]
Solubility in formic acid 26.6 g/100 g (18 °C)
27.5 g/100 g (25 °C)[1]
Solubility in acetone 1.2 g/100 g (20 °C)
0.83 g/100 g (25 °C)
0.61 g/100 g (50 °C)[1]
liquid ammonia
0.54 g/100 g (-34 °C)[1]
3.02 g/100 g (25 °C)
Vapor pressure 1 torr (785 °C)
10 torr (934 °C)
100 torr (1130 °C)[1]
−24.3·10−6 cm3/mol
1.662 (24 °C)
Viscosity 0.87 cP (807 °C)[1]
Structure
Octahedral
Linear (gas)
7.13 D (gas)
Thermochemistry
48.03 J/mol·K[1]
59.31 J/mol·K[1]
Std enthalpy of
formation
fH298)
-408.27 kJ/mol[1]
-384 kJ/mol[1]
Pharmacology
V04CX11 (WHO)
Hazards
GHS labelling:
GHS07: Exclamation mark[3]
Warning
H302, H315, H319, H335[3]
P261, P305+P351+P338[3]
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
2
0
0
Flash point Non-flammable
Lethal dose or concentration (LD, LC):
526 mg/kg (oral, rat)[4]
Safety data sheet (SDS) ICSC 0711
Related compounds
Other anions
Lithium fluoride
Lithium bromide
Lithium iodide
Lithium astatide
Other cations
Sodium chloride
Potassium chloride
Rubidium chloride
Caesium chloride
Francium chloride
Supplementary data page
Lithium chloride (data page)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Lithium chloride is a

hygroscopic properties.[5]

Chemical properties

Color produced when lithium chloride is heated

The salt forms crystalline hydrates, unlike the other alkali metal chlorides.[6] Mono-, tri-, and pentahydrates are known.[7] The anhydrous salt can be regenerated by heating the hydrates. LiCl also absorbs up to four equivalents of ammonia/mol. As with any other ionic chloride, solutions of lithium chloride can serve as a source of chloride ion, e.g., forming a precipitate upon treatment with silver nitrate:

LiCl + AgNO3 → AgCl + LiNO3

Preparation

Lithium chloride is produced by treatment of lithium carbonate with hydrochloric acid.[5] Anhydrous LiCl is prepared from the hydrate by heating in a stream of hydrogen chloride.

Uses

Commercial applications

Lithium chloride is mainly used for the production of

automobile parts. It is used as a desiccant for drying air streams.[5] In more specialized applications, lithium chloride finds some use in organic synthesis, e.g., as an additive in the Stille reaction. Also, in biochemical applications, it can be used to precipitate RNA from cellular extracts.[8]

Lithium chloride is also used as a flame colorant to produce dark red flames.

Niche uses

Lithium chloride is used as a relative humidity standard in the calibration of hygrometers. At 25 °C (77 °F) a saturated solution (45.8%) of the salt will yield an equilibrium relative humidity of 11.30%. Additionally, lithium chloride can be used as a hygrometer. This deliquescent salt forms a self-solution when exposed to air. The equilibrium LiCl concentration in the resulting solution is directly related to the relative humidity of the air. The percent relative humidity at 25 °C (77 °F) can be estimated, with minimal error in the range 10–30 °C (50–86 °F), from the following first-order equation: RH=107.93-2.11C, where C is solution LiCl concentration, percent by mass.

Molten LiCl is used for the preparation of carbon nanotubes,[9] graphene[10] and lithium niobate.[11]

Lithium chloride has been shown to have strong acaricidal properties, being effective against Varroa destructor in populations of honey bees.[12]

Lithium chloride is used as an aversive agent in lab animals to study conditioned place preference and aversion.

Precautions

Lithium salts affect the

sodium chloride deficiency, to the diuretics often administered to patients who were given lithium chloride, or to the patients' underlying conditions.[13]

See also

References

  1. ^ a b c d e f g h i j k l lithium chloride
  2. ^ a b Seidell, Atherton; Linke, William F. (1952). Solubilities of Inorganic and Organic Compounds. Van Nostrand. Retrieved 2014-06-02.
  3. ^ a b c Sigma-Aldrich Co., Lithium chloride. Retrieved on 2014-05-09.
  4. ^ ChemIDplus - 7447-41-8 - KWGKDLIKAYFUFQ-UHFFFAOYSA-M - Lithium chloride - Similar structures search, synonyms, formulas, resource links, and other chemical information
  5. ^ .
  6. .
  7. .
  8. .
  9. .
  10. .
  11. .
  12. .
  13. ^ .
  14. .
  15. ^ "Case of trie Substitute Salt". Time. 28 February 1949. Archived from the original on March 2, 2007.
  • Handbook of Chemistry and Physics, 71st edition, CRC Press, Ann Arbor, Michigan, 1990.
  • N. N. Greenwood, A. Earnshaw, Chemistry of the Elements, 2nd ed., Butterworth-Heinemann, Oxford, UK, 1997.
  • R. Vatassery, titration analysis of LiCl, sat'd in Ethanol by AgNO3 to precipitate AgCl(s). EP of this titration gives %Cl by mass.
  • H. Nechamkin, The Chemistry of the Elements, McGraw-Hill, New York, 1968.

External links