Food microbiology

Source: Wikipedia, the free encyclopedia.

Food microbiology is the study of the

probiotics.[1][2][3][4]

Subgroups of bacteria that affect food

In the study of bacteria in food, important groups have been subdivided based on certain characteristics. These groupings are not of taxonomic significance:[5]

Food safety

A microbiologist working in a biosafety laboratory tests for high risk pathogens in food

microorganisms and their products can also be used to combat these pathogenic microbes. Probiotic bacteria, including those that produce bacteriocins can kill and inhibit pathogens. Alternatively, purified bacteriocins such as nisin can be added directly to food products. Finally, bacteriophages, viruses that only infect bacteria can be used to kill bacterial pathogens.[6] Thorough preparation of food, including proper cooking, eliminates most bacteria and viruses. However, toxins produced by contaminants may not be liable to change to non-toxic forms by heating or cooking the contaminated food due to other safety conditions.[citation needed
]

Fermentation

molds to ripen and develop their characteristic flavors.[citation needed
]

Microbial biopolymers

Several microbially produced

biopolymers are used in the food industry.[7]

Alginate

Although listed here under the category 'Microbial
L. japonica
.

Poly-γ-glutamic acid

Poly-γ-glutamic acid (γ-PGA) produced by various strains of Bacillus has potential applications as a thickener in the food industry.[9]

Food testing

Food microbiology laboratory at the Faculty of Food Technology, Latvia University of Life Sciences and Technologies

To ensure safety of food products, microbiological tests such as testing for pathogens and spoilage organisms are required. This way the risk of contamination under normal use conditions can be examined and food poisoning outbreaks can be prevented. Testing of food products and ingredients is important along the whole supply chain as possible flaws of products can occur at every stage of production.[10] Apart from detecting spoilage, microbiological tests can also determine germ content, identify yeasts and molds, and Salmonella. For Salmonella, scientists are also developing rapid and portable technologies capable of identifying unique variants of Salmonella.[11]

Polymerase chain reaction (PCR) is a quick and inexpensive method to generate numbers of copies of a DNA fragment at a specific band ("PCR (Polymerase Chain Reaction)," 2008). For that reason, scientists are using PCR to detect different kinds of viruses or bacteria, such as HIV and anthrax based on their unique DNA patterns. Various kits are commercially available to help in food pathogen nucleic acids extraction,[12] PCR detection, and differentiation.[13] The detection of bacterial strands in food products is very important to everyone in the world, for it helps prevent the occurrence of food borne illness. Therefore, PCR is recognized as a DNA detector in order to amplify and trace the presence of pathogenic strands in different processed food.[citation needed]

See also

References

  1. .
  2. .
  3. .
  4. .
  5. ^ Ray, B. Fundamental Food Microbiology, 3rd Ed. (2005), pp 29-32
  6. PMID 23316235
    .
  7. .
  8. .
  9. .
  10. ^ "Food Testing Laboratories". Archived from the original on 2011-10-20. Retrieved 2012-04-18.
  11. ^ "Rapid Testing and Identification of Salmonella in Foods". Archived from the original on 2022-03-27. Retrieved 2012-04-18.
  12. ^ "FOOD PATHOGEN DNA EXTRACTION filter paper card". Archived from the original on 2021-11-27. Retrieved 2014-07-11.
  13. ^ "Microbial Detection Identification Kits". Archived from the original on 2014-07-15. Retrieved 2014-07-11.

External links