Isotopes of palladium

Source: Wikipedia, the free encyclopedia.
(Redirected from
Palladium-108
)
Isotopes of palladium (46Pd)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
100Pd synth 3.63 d ε
100Rh
γ
102Pd 1.02%
stable
103Pd synth 16.991 d ε
103Rh
104Pd 11.1% stable
105Pd 22.3% stable
106Pd 27.3% stable
107Pd trace 6.5×106 y
β
107Ag
108Pd 26.5% stable
110Pd 11.7% stable
talk
  • edit
  • Natural

    u
    (91Pd) to 128.96 u (129Pd). Most of these have half-lives that are less than a half an hour except 101Pd (half-life: 8.47 hours), 109Pd (half-life: 13.7 hours), and 112Pd (half-life: 21 hours).

    The primary

    decay mode before the most abundant stable isotope, 106Pd, is electron capture and the primary mode after is beta decay. The primary decay product before 106Pd is rhodium and the primary product after is silver
    .

    nucleosynthetic event. 107Pd versus Ag correlations observed in bodies, which have clearly been melted since accretion of the Solar System, must reflect the presence of short-lived nuclides in the early Solar System.[5]

    List of isotopes

    Nuclide
    [n 1]
    Z N Isotopic mass (Da)
    [n 2][n 3]
    Half-life
    [n 4]
    Decay
    mode
    [n 5]
    Daughter
    isotope

    [n 6]
    Natural abundance (mole fraction)
    Excitation energy[n 4] Normal proportion Range of variation
    91Pd 46 45 90.94911(61)# 10# ms [>1.5 µs] β+ 91Rh 7/2+#
    92Pd 46 46 91.94042(54)# 1.1(3) s [0.7(+4−2) s] β+ 92Rh 0+
    93Pd 46 47 92.93591(43)# 1.07(12) s β+ 93Rh (9/2+)
    93mPd 0+X keV 9.3(+25−17) s
    94Pd 46 48 93.92877(43)# 9.0(5) s β+ 94Rh 0+
    94mPd 4884.4(5) keV 530(10) ns (14+)
    95Pd 46 49 94.92469(43)# 10# s β+ 95Rh 9/2+#
    95mPd 1860(500)# keV 13.3(3) s β+ (94.1%) 95Rh (21/2+)
    IT
    (5%)
    95Pd
    β+, p (.9%) 94Ru
    96Pd 46 50 95.91816(16) 122(2) s β+ 96Rh 0+
    96mPd 2530.8(1) keV 1.81(1) µs 8+
    97Pd 46 51 96.91648(32) 3.10(9) min β+ 97Rh 5/2+#
    98Pd 46 52 97.912721(23) 17.7(3) min β+ 98Rh 0+
    99Pd 46 53 98.911768(16) 21.4(2) min β+ 99Rh (5/2)+
    100Pd 46 54 99.908506(12) 3.63(9) d EC 100Rh 0+
    101Pd 46 55 100.908289(19) 8.47(6) h β+ 101Rh 5/2+
    102Pd 46 56 101.905609(3)
    Observationally Stable[n 8]
    0+ 0.0102(1)
    103Pd[n 9] 46 57 102.906087(3) 16.991(19) d EC 103Rh 5/2+
    103mPd 784.79(10) keV 25(2) ns 11/2−
    104Pd 46 58 103.904036(4) Stable 0+ 0.1114(8)
    105Pd[n 10] 46 59 104.905085(4) Stable 5/2+ 0.2233(8)
    106Pd[n 10] 46 60 105.903486(4) Stable 0+ 0.2733(3)
    107Pd[n 11] 46 61 106.905133(4) 6.5(3)×106 y β 107Ag 5/2+ trace[n 12]
    107m1Pd 115.74(12) keV 0.85(10) µs 1/2+
    107m2Pd 214.6(3) keV 21.3(5) s IT 107Pd 11/2−
    108Pd[n 10] 46 62 107.903892(4) Stable 0+ 0.2646(9)
    109Pd[n 10] 46 63 108.905950(4) 13.7012(24) h β 109mAg 5/2+
    109m1Pd 113.400(10) keV 380(50) ns 1/2+
    109m2Pd 188.990(10) keV 4.696(3) min IT 109Pd 11/2−
    110Pd[n 10] 46 64 109.905153(12) Observationally Stable[n 13] 0+ 0.1172(9)
    111Pd 46 65 110.907671(12) 23.4(2) min β 111mAg 5/2+
    111mPd 172.18(8) keV 5.5(1) h IT 111Pd 11/2−
    β 111mAg
    112Pd 46 66 111.907314(19) 21.03(5) h β 112Ag 0+
    113Pd 46 67 112.91015(4) 93(5) s β 113mAg (5/2+)
    113mPd 81.1(3) keV 0.3(1) s IT 113Pd (9/2−)
    114Pd 46 68 113.910363(25) 2.42(6) min β 114Ag 0+
    115Pd 46 69 114.91368(7) 25(2) s β 115mAg (5/2+)#
    115mPd 89.18(25) keV 50(3) s β (92%) 115Ag (11/2−)#
    IT (8%) 115Pd
    116Pd 46 70 115.91416(6) 11.8(4) s β 116Ag 0+
    117Pd 46 71 116.91784(6) 4.3(3) s β 117mAg (5/2+)
    117mPd 203.2(3) keV 19.1(7) ms IT 117Pd (11/2−)#
    118Pd 46 72 117.91898(23) 1.9(1) s β 118Ag 0+
    119Pd 46 73 118.92311(32)# 0.92(13) s β 119Ag
    120Pd 46 74 119.92469(13) 0.5(1) s β 120Ag 0+
    121Pd 46 75 120.92887(54)# 285 ms β 121Ag
    122Pd 46 76 121.93055(43)# 175 ms [>300 ns] β 122Ag 0+
    123Pd 46 77 122.93493(64)# 108 ms β 123Ag
    124Pd 46 78 123.93688(54)# 38 ms β 124Ag 0+
    125Pd[6] 46 79 57 ms β 125Ag
    126Pd[7][8] 46 80 48.6 ms β 126Ag 0+
    126m1Pd 2023 keV 330 ns IT 126Pd 5−
    126m2Pd 2110 keV 440 ns IT 126m1Pd 7−
    127Pd 46 81 38 ms β 127Ag
    128Pd[7][8] 46 82 35 ms β 128Ag 0+
    128mPd 2151 keV 5.8 µs IT 128Pd 8+
    129Pd 46 83 31 ms β 129Ag
    This table header & footer:
    1. ^ mPd – Excited nuclear isomer.
    2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
    3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
    4. ^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
    5. ^ Modes of decay:
      EC: Electron capture
      IT:
      Isomeric transition


      p: Proton emission
    6. ^ Bold symbol as daughter – Daughter product is stable.
    7. ^ ( ) spin value – Indicates spin with weak assignment arguments.
    8. ^ Believed to decay by β+β+ to 102Ru
    9. ^ Used in medicine
    10. ^
      Fission product
    11. ^ Long-lived fission product
    12. Cosmogenic
      nuclide, also found as nuclear contamination
    13. ^ Believed to decay by ββ to 110Cd with a half-life over 6×1017 years

    Palladium-103

    Palladium-103 is a

    rhodium-103, emitting characteristic x-rays with 21 keV of energy
    .

    Palladium-107

    Nuclide
    t12
    Yield Q[a 1]
    βγ
    (
    Ma
    )
    (%)[a 2] (
    keV
    )
    99Tc 0.211 6.1385 294 β
    126Sn
    0.230 0.1084 4050[a 3] βγ
    79Se 0.327 0.0447 151 β
    135Cs
    1.33 6.9110[a 4] 269 β
    93Zr
    1.53 5.4575 91 βγ
    107Pd
    6.5   1.2499 33 β
    129I 15.7   0.8410 194 βγ
    1. ^ Decay energy is split among β, neutrino, and γ if any.
    2. ^ Per 65 thermal neutron fissions of 235U and 35 of 239Pu.
    3. ^ Has decay energy 380 keV, but its decay product 126Sb has decay energy 3.67 MeV.
    4. ^ Lower in thermal reactors because 135Xe, its predecessor, readily absorbs neutrons.

    Palladium-107 is the second-longest lived (

    107Ag
    , which is stable.

    Its yield from

    actinides
    [which?] will produce palladium-107 at higher yields.

    One source[10] estimates that palladium produced from fission contains the isotopes 104Pd (16.9%),105Pd (29.3%), 106Pd (21.3%), 107Pd (17%), 108Pd (11.7%) and 110Pd (3.8%). According to another source, the proportion of 107Pd is 9.2% for palladium from thermal neutron fission of 235U, 11.8% for 233U, and 20.4% for 239Pu (and the 239Pu yield of palladium is about 10 times that of 235U).

    Because of this dilution and because 105Pd has 11 times the

    neutron absorption cross section, 107Pd is not amenable to disposal by nuclear transmutation. However, as a noble metal
    , palladium is not as mobile in the environment as iodine or technetium.

    References

    1. .
    2. ^ "Standard Atomic Weights: Palladium". CIAAW. 1979.
    3. ISSN 1365-3075
      .
    4. .
    5. ^ J. H. Chen; G. J. Wasserburg (1990). "The isotopic composition of Ag in meteorites and the presence of 107Pd in protoplanets". .
    6. ^ Future Plan of the Experimental Program on Synthesizing the Heaviest Element at RIKEN, Kosuke Morita Archived September 17, 2012, at the Wayback Machine
    7. ^
      PMID 24160593
      .
    8. ^ a b "Experiments on neutron-rich atomic nuclei could help scientists to understand nuclear reactions in exploding stars". phys.org. 2013-11-29.
    9. ^ a b Winter, Mark. "Isotopes of palladium". WebElements. The University of Sheffield and WebElements Ltd, UK. Retrieved 4 March 2013.
    10. ^ R. P. Bush (1991). "Recovery of Platinum Group Metals from High Level Radioactive Waste" (PDF). Platinum Metals Review. 35 (4): 202–208. Archived from the original (PDF) on 2015-09-24. Retrieved 2011-04-02.