2022 in paleontology

Source: Wikipedia, the free encyclopedia.
List of years in paleontology (
table
)
In paleobotany
2019
2020
2021
2022
2023
2024
2025
In arthropod paleontology
2019
2020
2021
2022
2023
2024
2025
In paleoentomology
2019
2020
2021
2022
2023
2024
2025
In paleomalacology
2019
2020
2021
2022
2023
2024
2025
In reptile paleontology
2019
2020
2021
2022
2023
2024
2025
In archosaur paleontology
2019
2020
2021
2022
2023
2024
2025
In mammal paleontology
2019
2020
2021
2022
2023
2024
2025
In paleoichthyology
2019
2020
2021
2022
2023
2024
2025

palynomorphs and chemical residues. Because humans have encountered fossils for millennia, paleontology has a long history both before and after becoming formalized as a science
. This article records significant discoveries and events related to paleontology that occurred or were published in the year 2022.

Flora

Plants

Fungi

Newly named fungi

Name Novelty Status Authors Age Type locality Location Notes Images

Meliolinites bhutanensis[2]

Sp. nov

In press

Bera et al.

Miocene-Pliocene

Bhutan

A member of the family Meliolaceae.

Zygosporium miochinensis[3]

Sp. nov

Bera et al.

Pliocene

Bhutan

A member of Xylariales belonging to the family Zygosporiaceae.

Zygosporium oligocenicum[4]

Sp. nov

Worobiec in Worobiec & Erdei

Oligocene

Hungary

A member of Xylariales belonging to the family Zygosporiaceae.

Zygosporium palaeotuberculatum[3]

Sp. nov

Bera et al.

Miocene-Pliocene

India

A member of Xylariales belonging to the family Zygosporiaceae.

Mycological research

"Algae"

Name Novelty Status Authors Age Type locality Location Notes Images

Amsassia talimuensis[7]

Sp. nov

Valid

Shen, Liu & Wu

Ordovician

Lianglitage Formation

China

A calcareous organism, probably a green alga with affinities to Cladophora.

Calathophycus[8]

Gen. et sp. nov

Valid

Tang in Tang et al.

Cambrian (Fortunian)

Kuanchuanpu Formation

China

Probably a eukaryotic multicellular alga of uncertain affinities. Genus includes new species C. irregulatus.

Jiuqunaoella sergeevii[9]

Sp. nov

Singh & Sharma

Mesoproterozoic

Singhora Group

India

A multicellular eukaryote, probably an alga.

Palaeoscytosiphon[9]

Gen. et sp. nov

Singh & Sharma

Mesoproterozoic

Singhora Group

India

A multicellular eukaryote, probably a brown alga. Genus includes new species P. shuklaii.

Qingjiangthallus[10]

Gen. et sp. nov

Li & Zhang in Li et al.

Cambrian Stage 3

Shuijingtuo Formation

China

A red alga, possibly a member of the family Florideophyceae. Genus includes new species Q. cystocarpium.

Reptamsassia[11]

Gen. et 2 sp. nov

Valid

Lee, Elias & Pratt

Ordovician (Floian)

Boat Harbour Formation

Canada
( Newfoundland and Labrador)

A calcareous alga (possibly green alga) related to Amsassia. Genus includes new species R. divergens and R. minuta.

Floral research

  • Sforna et al. (2022) report the discovery of bound nickel-tetrapyrrole moieties preserved within cells of a ~1-billion-years-old eukaryote Arctacellularia tetragonala from the BII Group of the Mbuji-Mayi Supergroup (Democratic Republic of the Congo), identify the tetrapyrrole moieties as chlorophyll derivatives, and interpret A. tetragonala as one of the earliest known multicellular algae.[12]
  • A study on the mode of preservation of macroalgae and associated filamentous microfossils from the Tonian Dolores Creek Formation (Yukon, Canada) is published by Maloney et al. (2022).[13]
  • Li et al. (2022) study the morphology and growth features of
    metaphyte.[14]
  • nematophytes would have towered over land plants from the same fossil plant assemblages, including vascular plant trees, that nematophytes were branched and formed closed canopies, that there were extensive networks of nutrient-gathering glomeromycotan mycorrhizae in Ordovician to Devonian paleosols, and that the environment with nematophytes as the tallest elements of terrestrial vegetation and soils riddled with mycorrhizae may have nurtured, sheltered and facilitated the evolution of early land plants.[15]

Cnidarians

Newly named cnidarians

Name Novelty Status Authors Age Type locality Country Notes Images

Acropora suwanneensis[16]

Sp. nov

Valid

Wallace & Portell

Early Oligocene

Suwannee Limestone

United States
( Florida)

A species of Acropora.

Acropora upchurchi[16]

Sp. nov

Valid

Wallace & Portell

Early Oligocene

Suwannee Limestone

United States
( Florida)

A species of Acropora.

Arctophyllum shuangjingziense[17]

Sp. nov

Yang et al.

Carboniferous (Pennsylvanian)

China

A rugose coral.

Auroralumina[18]

Gen. et sp. nov

Valid

Dunn et al.

Ediacaran

Bradgate Formation

United Kingdom

A stem-medusozoan. The type species is A. attenboroughii.

Corwenia tirhelensis[19]

Sp. nov

In press

Rodríguez et al.

Carboniferous (Bashkirian)

Tirhela Formation

Morocco

A rugose coral belonging to the family Aulophyllidae.

Glyptoconularia antiatlasica[20]

Sp. nov

Valid

Van Iten, Gutiérrez-Marco & Cournoyer

Ordovician (Darriwilian)

Taddrist Formation

Morocco

A conulariid.

Gracilopora delicata[21]

Sp. nov

Valid

Niko

Devonian (Givetian)

Naidaijin Formation

Japan

A coral belonging to the group Favositida and the family Pachyporidae.

Grypophyllum schroederi[22]

Sp. nov

Valid

Coen-Aubert

Devonian (Givetian)

Dreimühlen Formation

Germany

A rugose coral belonging to the family Ptenophyllidae.

Heterocyathus filkorni[23]

Sp. nov

In press

Videira-Santos, Tobin & Scheffler

Late Cretaceous (Santonian to Campanian)

Santa Marta Formation

Antarctica

A species of Heterocyathus.

?Holoconularia rossica[24]

Sp. nov

Van Iten, Mironenko & Vinn

Carboniferous (Serpukhovian)

Gurovo Formation

Russia

A conulariid.

Ilankirus[25]

Gen. et sp. nov

Valid

Sarsembaev & Marusin

Cambrian Stage 2

Russia

A conulariid. Genus includes new species I. kessyusensis.

Klaamannipora densitabulata[21]

Sp. nov

Valid

Niko

Devonian (Givetian)

Naidaijin Formation

Japan

A coral belonging to the group Favositida and the family Favositidae.

Lafustalcyon[26]

Gen. et sp. nov

In press

Denayer et al.

Carboniferous (Serpukhovian)

France

An alcyonacean octocoral. Genus includes new species L. vachardi.

Macgeea mistiaeni[22]

Sp. nov

Valid

Coen-Aubert

Devonian (Givetian)

Dreimühlen Formation

Germany

A rugose coral belonging to the family Phillipsastreidae.

Marennophyllum[22]

Gen. et comb. et sp. nov

Valid

Coen-Aubert

Devonian (Givetian)

Mont d'Haurs Formation

Belgium
Germany

A rugose coral belonging to the family Cystiphyllidae. The type species is "Cystiphylloides" marennense Coen-Aubert (2019); genus also includes "Paralytophyllum" praecipuum Wedekind & Vollbrecht (1931), as well as new species M. wenningi.

Octapyrgites denticulus[27]

Sp. nov

Valid

Yong et al.

Cambrian

Kuanchuanpu Formation

China

A microscopic, sedentary medusozoan.

Paraconularia ediacara[28]

Sp. nov

Leme, Van Iten & Simões

Latest Ediacaran

Tamengo Formation

Brazil

The earliest so far confirmed Conulariid cnidarian.

Pinacopora baltica[29]

Sp. nov

Valid

Plusquellec, Eyzenga & van Keulen

Ordovician (Katian)

Germany

A tabulate coral belonging to the group Heliolitida and the family Proporidae.

Pseudofavosites asoensis[21]

Sp. nov

Valid

Niko

Devonian (Givetian)

Naidaijin Formation

Japan

A coral belonging to the group Favositida and the family Pseudofavositidae.

Rayaphyllia[30]

Gen. et sp. et comb. nov

Valid

Löser

Cretaceous

San Juan Raya Formation

Italy
Mexico
China?

A stony coral belonging to the superfamily Misistelloidea and the family Rayasmiliidae. The type species is R. atheca; genus also includes "Thecosmilia" distefanoi Prever (1909) and possibly also "Montlivaltoides" ngariensis He & Xiao (1990).

Rayasmilia[30]

Gen. et sp. et comb. nov

Valid

Löser

Late Jurassic to Late Cretaceous (Cenomanian)

San Juan Raya Formation

China
Crimean Peninsula
France
Italy
Japan
Mexico
Slovakia
Spain
Tanzania
United States

A stony coral belonging to the superfamily Misistelloidea, the type genus of the new family Rayasmiliidae. The type species is R. salvata; genus also includes multiple species formerly assigned to the genera Aulophyllia, Axosmilia, Coelosmilia, Lophosmilia, Peplosmilia, Pleurosmilia, Rhipidosmilia, Saltocyathus, Sphenotrochus and Thecosmilia.

Semenomalophyllia[26]

Gen. nov

In press

Denayer et al.

Carboniferous (Serpukhovian)

France

A colonial heterocoral. Genus includes S. herbigi, S. perretae, S. weyeri and S. webbi.

Septuconularia crassiformis[31]

Sp. nov

Valid

Song et al.

Cambrian Stage 2

Yanjiahe Formation

China

A member of the family Hexangulaconulariidae.

Sonoraphyllia[30]

Gen. et sp. et comb. nov

Valid

Löser

Late Jurassic (Tithonian) to Cretaceous (Albian, possibly Cenomanian)

Cerro de Oro Formation

China
Czech Republic
Japan
Mexico
Spain
United States
Italy?

A stony coral belonging to the superfamily Misistelloidea and the family Rayasmiliidae. The type species is S. aurea; genus also includes "Aplophyllia" marini Bataller (1947), "Aplosmilia" tolmachoffana Wells (1932), "Placophyllia" baingoinensis Wang, Sun, Wang, Zheng, Yue & Liao (2020), "Placophyllia" bandeli Baron-Szabo (1998), "Placophyllia" florosa Eliášová (1976), and "Thecosmilia" hideshimaensis Eguchi (1951).

Stephanocyathus (Stephanocyathus) taguchii[32]

Sp. nov

Valid

Niko & Suzuki

Miocene

Takakura Formation

Japan

A caryophylloid coral.

Stylomaeandra neuquensis[33]

Sp. nov

In press

Garberoglio, Löser & Lazo

Early Cretaceous (ValanginianHauterivian)

Agrio Formation

Argentina

A stony coral belonging to the family Latomeandridae.

Syringopora paraconferta[34]

Sp. nov

Valid

Ohar

Carboniferous (Mississippian)

Ukraine

A tabulate coral.

Thamnopora miyamotoi[21]

Sp. nov

Valid

Niko

Devonian (Givetian)

Naidaijin Formation

Japan

A coral belonging to the group Favositida and the family Pachyporidae.

Thamnoptychia tanimotoi[21]

Sp. nov

Valid

Niko

Devonian (Givetian)

Naidaijin Formation

Japan

A coral belonging to the group Favositida and the family Pachyporidae.

Cnidarian research

  • A study on the taphonomy and systematics of conulariid specimens from the Silurian (Telychian) Waukesha Lagerstätte (Wisconsin, United States) is published by Miller et al. (2022).[35]
  • Wang et al. (2022) describe phosphatized muscle fibers preserved in three dimensions in post-embryonic stages of olivooids from the Cambrian (Fortunian) Kuanchuanpu Formation (China) – representing the oldest occurrence of muscle tissue in cnidarians, and in animals in general, reported to date – and evaluate the implications of this finding and fossil evidence from ecdysozoans for the knowledge of the evolution of the muscle systems of early animals.[36]
  • Zhang et al. (2022) describe the first known soft tissues of Gangtoucunia aspera, and interpret this taxon as a total group medusozoan.[37]
  • A study on changes in the functional diversity of tabulate coral assemblages across the Devonian and early Carboniferous, and on their implications for the knowledge of the impact of extinction events from this time period on tabulate corals, is published by Bridge et al. (2022).[38]
  • A study on the interactions between conulariid specimens, and attached epibionts from the Silurian (Telychian) Waukesha Lagerstätte (Wisconsin, United States) is published by April et al. (2022).[39]

Arthropods

Bryozoans

New named bryozoans

Name Novelty Status Authors Age Type locality Location Notes Images

Albardonia[40]

Gen. et sp. nov

Valid

Ernst & Carrera

Ordovician (Sandbian)

La Pola Formation

Argentina

A trepostome belonging to the family Heterotrypidae. The type species is A. bifoliata.

Antropora ramaniaensis[41]

Sp. nov

Valid

Sonar, Pawar & Wayal

Miocene (Burdigalian)

Chhasra Formation

India

A species of Antropora.

Argentinopora[40]

Gen. et sp. nov

Valid

Ernst & Carrera

Ordovician (Sandbian)

La Pola Formation

Argentina

A trepostome of uncertain affinities. The type species is A. robusta.

Attinopora atlantica[42]

Sp. nov

López-Gappa & Pérez

Miocene

Monte León Formation

Argentina

A member of the family Cinctiporidae.

Burdwoodipora griffini[43]

Sp. nov

Valid

Pérez & López-Gappa

Miocene (Burdigalian)

Monte León Formation

Argentina

Canda ukirensis[41]

Sp. nov

Valid

Sonar, Pawar & Wayal

Miocene (Burdigalian)

Chhasra Formation

India

A species of Canda.

Chazydictya ornata[40]

Sp. nov

Valid

Ernst & Carrera

Ordovician (Sandbian)

La Pola Formation

Argentina

A cryptostome belonging to the family Escharoporidae.

Dianulites pakriensis[44]

Sp. nov

Valid

Ernst

Ordovician (Darriwilian)

Estonia

A member of Stenolaemata belonging to the superorder Palaeostomata, the order Esthonioporata and the family Dianulitidae.

Dyscritella felixi[45]

Sp. nov

Valid

Ernst et al.

Carboniferous (Pennsylvanian)

Graham Formation

United States
( Texas)

Fenestella salairica[46]

Sp. nov

Valid

Mesentseva

Devonian (Emsian)

Russia

A fenestellid bryozoan.

Hemitrypa aktaschensis[46]

Sp. nov

Valid

Mesentseva

Devonian (Emsian)

Russia

A fenestellid bryozoan.

Hemitrypa cyathiformis[46]

Sp. nov

Valid

Mesentseva

Devonian (Emsian)

Russia

A fenestellid bryozoan.

Heterotrypa enodis[40]

Sp. nov

Valid

Ernst & Carrera

Ordovician (Sandbian)

La Pola Formation

Argentina

A trepostome belonging to the family Heterotrypidae.

Hillmeropora volgogradensis[47]

Sp. nov

Valid

Koromyslova & Pervushov

Late Cretaceous (Turonian)

Russia
( Volgograd Oblast)

Homotrypa cochlea[48]

Sp. nov

Valid

Buttler, Cherns & McCobb

Silurian (Ludlow)

Upper Leintwardine Formation

United Kingdom

Iodictyum akaishiensis[49]

Sp. nov

Valid

Arakawa

Miocene (Langhian)

Moniwa Formation

Japan

A member of the family Phidoloporidae. Published online in 2022, but the issue date is listed as January 2023.[49]

Laminoporina[50]

Gen. et sp. nov

Valid

Bizzarini

Late Triassic (Carnian)

San Cassiano Formation

Italy

A member of Stenolaemata belonging to the group Cyclostomida. The type species is L. giampetrii.

Laxifenestella magnifenestrula[46]

Sp. nov

Valid

Mesentseva

Devonian (Emsian)

Russia

A fenestellid bryozoan.

Laxifenestella texana[45]

Sp. nov

Valid

Ernst et al.

Carboniferous (Pennsylvanian)

Graham Formation

United States
( Texas)

Micropora mikesmithi[51]

Sp. nov

Valid

Taylor & Villier

Late Cretaceous (Campanian)

Aubeterre Formation

France

A member of the family Microporidae.

Microporella gladirostra[52]

Sp. nov

Valid

Ramsfjell, Taylor & Di Martino

Miocene (Otaian and Altonian)

White Rock Limestone Formation

New Zealand

A species of Microporella.

Microporella incurvata[52]

Sp. nov

Valid

Ramsfjell, Taylor & Di Martino

Miocene (Otaian and Altonian)

Clifden Limestone Formation

New Zealand

A species of Microporella.

Microporella whiterocki[52]

Sp. nov

Valid

Ramsfjell, Taylor & Di Martino

Miocene (Otaian)

White Rock Limestone Formation

New Zealand

A species of Microporella.

Mishulgella vachardi[53]

Sp. nov

Valid

Ernst, Krainer & Lucas

Carboniferous (Pennsylvanian)

United States
( New Mexico)

A trepostome bryozoan.

Nicholsonella spinigera[40]

Sp. nov

Valid

Ernst & Carrera

Ordovician (Sandbian)

La Pola Formation

Argentina

A trepostome of uncertain affinities.

Odontoporella miocenica[43]

Sp. nov

Valid

Pérez & López-Gappa

Miocene (Burdigalian)

Monte León Formation

Argentina

Pakripora[44]

Gen. et sp. nov

Valid

Ernst

Ordovician (Darriwilian)

Estonia

A member of

Trepostomata
of uncertain phylogenetic placement. The type species is P. cavernosa.

Pavolunulites mirabilis[47]

Sp. nov

Valid

Koromyslova & Pervushov

Late Cretaceous (Turonian)

Russia
( Volgograd Oblast)

A member of Flustrina belonging to the family Lunulitidae.

Platelinella[51]

Gen. et sp. nov

Valid

Taylor & Villier

Late Cretaceous (Campanian)

Biron Formation

France

A member of the family Microporidae. The type species is P. solea.

Pollexelea[54]

Gen. et sp. nov

Valid

Taylor

Early Cretaceous (Albian)

India

A cyclostome belonging to the family Eleidae. The type species is P. badvei.

Primorella zhankurganica[55]

Sp. nov

Valid

Tolokonnikova & Fedorov

Carboniferous (Tournaisian)

Orgalysay Formation

Kazakhstan

Pseudostictoporella simplex[40]

Sp. nov

Valid

Ernst & Carrera

Ordovician (Sandbian)

La Pola Formation

Argentina

A cryptostome belonging to the family Stictoporellidae.

Rarifenestella ornamentum[46]

Sp. nov

Valid

Mesentseva

Devonian (Emsian)

Russia

A fenestellid bryozoan.

Reptomultelea cuffeyi[54]

Sp. nov

Valid

Taylor

Early Cretaceous (Albian)

United States
( Texas)

A cyclostome belonging to the family Eleidae.

Thalamoporella badvei[56]

Sp. nov

Valid

Sonar, Pawar & Wayal

Miocene (Aquitanian)

Kharinadi Formation

India

A species of Thalamoporella.

Thalamoporella bhujensis[56]

Sp. nov

Valid

Sonar, Pawar & Wayal

Miocene (Aquitanian)

Kharinadi Formation

India

A species of Thalamoporella.

Xenotrypa argentinensis[40]

Sp. nov

Valid

Ernst & Carrera

Ordovician (Sandbian)

La Pola Formation

Argentina

A

cystoporate belonging to the family Xenotrypidae
.

Bryozoan research

  • Fossils which might represent the oldest bryozoans with calcareous skeletons reported to date are described from the Cambrian Harkless Formation (Nevada, United States) by Pruss et al. (2022).[57]
  • A study on the impact of paleolatitude on the calcification of cryptostome and trepostome bryozoans through the Paleozoic is published by Reid, Wyse Jackson & Key (2022).[58]
  • A study on the diversity of bryozoans from the Ordovician (Tremadocian) Fenhsiang Formation (China) is published by Ma et al. (2022).[59]
  • A study on the diversification dynamics of cheilostome bryozoans since the Late Jurassic is published by Moharrek et al. (2022).[60]
  • A study on the phylogenetic relationships and evolutionary history of cheilostome bryozoans is published by Orr et al. (2022), who interpret their findings as indicating that named cheilostome genera and species are natural groupings, and that skeletal traits can be used to assign fossil or contemporary specimens to cheilostome species.[61]

Brachiopods

Newly named brachiopods

Name Novelty Status Authors Age Type locality Location Notes Images

Alaskomicospirifer[62]

Gen. et sp. nov

Valid

Baranov & Blodgett

Devonian (Eifelian)

United States
( Alaska)

A member of Spiriferida belonging to the superfamily Ambocoelioidea and the family Rhynchospiriferidae. Genus includes new species A. boreus.

Allorhynchus scientiana[63]

Sp. nov

Valid

Torres-Martínez & Sour-Tovar

Carboniferous (Serpukhovian)

Ixtaltepec Formation

Mexico

A member of Rhynchonellida belonging to the superfamily Wellerelloidea and the family Allorhynchidae.

Altynorthis[64]

Gen. et 2 sp. et comb. nov

In press

Popov & Cocks

Ordovician

Berkutsyur Formation

Kazakhstan

A member of the family Plectorthidae. The type species is A. vinogradovae; genus also includes new species A. betpakdalensis, as well as "Hesperorthis" tabylgatensis Misius (1986).

Anchorhynchia multicostata[65]

Sp. nov

Valid

Viaretti et al.

Permian (Kungurian)

Batain Group

Oman

A member of Rhynchonellida belonging to the family Wellerellidae.

Andronovia[66]

Gen. et sp. nov

Valid

Baranov & Blodgett

Devonian (Emsian)

Russia

A member of Pentamerida belonging to the group Pentameridina and the family Gypidulidae. The type species is A. geremgandzhensis.

Anemonaria kitakamiense[67]

Sp. nov

Valid

Tazawa in Tazawa & Shintani

Permian (SakmarianKungurian)

Japan

A member of Productida belonging to the family Paucispiniferidae.

Anthracospirifer oaxacaensis[63]

Sp. nov

Valid

Torres-Martínez & Sour-Tovar

Carboniferous (Moscovian)

Ixtaltepec Formation

Mexico

A member of Spiriferida belonging to the superfamily Spiriferoidea and the family Spiriferidae.

Apatomorpha akbakaiensis[64]

Sp. nov

In press

Popov & Cocks

Ordovician

Baigara Formation

Kazakhstan

Aploobolus[64]

Gen. et sp. nov

In press

Popov & Cocks

Ordovician (Sandbian)

Kopkurgan Formation

Kazakhstan

A member of the family Obolidae. The type species is A. tenuis.

Apousiella belliloci aramaris[68]

Ssp. nov

In press

García-Alcalde

Devonian (Frasnian)

Piñeres Formation

Spain

A member of Spiriferida belonging to the family Mucrospiriferidae.

Apousiella dorlodoti peranensis[68]

Ssp. nov

In press

García-Alcalde

Devonian (Givetian)

Candás Formation

Spain

A member of Spiriferida belonging to the family Mucrospiriferidae.

Apousiella mozarti[68]

Sp. nov

In press

García-Alcalde

Devonian (Givetian or Frasnian)

Candás Formation

Spain

A member of Spiriferida belonging to the family Mucrospiriferidae.

Aramazdospirifer[69]

Gen. et comb. nov

Valid

Serobyan et al.

Devonian (Famennian)

Armenia

A member of the family Cyrtospiriferidae. The type species is "Spirifer" orbelianus Abich (1858).

Araxathyris minor[70]

Sp. nov

Valid

Wu et al.

Permian (Wuchiapingian)

Shuizhutang Formation

China

Arzonellina bogicae[71]

Sp. nov

In press

Vörös

Early Jurassic (Sinemurian?)

Brachiopodal Hierlatz Limestone

Hungary

A member of Terebratulida belonging to the family Arzonellinidae.

Baeorhynchia begini[72]

Sp. nov

Valid

Feldman, Blodgett & Wilson

Middle Jurassic (Callovian)

Matmor Formation

Israel

A member of Rhynchonellida.

Baitalorhyncha[64]

Gen. et sp. nov

In press

Popov & Cocks

Ordovician

Kazakhstan

A member of the family Sphenotretidae. The type species is B. rectimarginata.

Batenevotreta? mexicana[73]

Sp. nov

Valid

Holmer et al.

Cambrian (Wuliuan)

El Gavilán Formation

Mexico

A member of Acrotretida, possibly a member of the family Scaphelasmatidae.

Bimuria karatalensis[64]

Sp. nov

In press

Popov & Cocks

Ordovician

Kazakhstan

A member of the family Bimuriidae.

Brachiobittnerella[74]

Nom. nov

Ceccolini & Cianferoni

Triassic

Hungary
Tajikistan

A member of Thecideida belonging to the family Thecospirellidae; a replacement name for Bittnerella Dagys (1974).

Brachiokasakhstania[74]

Nom. nov

Ceccolini & Cianferoni

Permian

Canada

A member of Spiriferida belonging to the family Spiriferidae; a replacement name for Kasakhstania Besnossova (1968).

Brachiosvalbardia[74]

Nom. nov

Ceccolini & Cianferoni

Late Paleozoic

Australia
Greenland
Norway
Russia

A member of Productida belonging to the family Rugosochonetidae; a replacement name for Svalbardia Barkhatova (1970).

Brachiotesuquea[74]

Nom. nov

Ceccolini & Cianferoni

Carboniferous

United States
( New Mexico)

A member of Productida belonging to the family Productidae; a replacement name for Tesuquea Sutherland & Harlow (1973).

Calloria? hilleri[75]

Sp. nov

Valid

Cooper

Miocene

Monzi Formation

South Africa

Possibly a species of Calloria.

Callytharrella websteri[65]

Sp. nov

Valid

Viaretti et al.

Permian (Kungurian)

Batain Group

Oman

A member of Productida belonging to the family Productidae.

Cheeneetnukispirifer[62]

Gen. et sp. nov

Valid

Baranov & Blodgett

Devonian (Eifelian)

United States
( Alaska)

A member of Spiriferida belonging to the superfamily Ambocoelioidea and the family Ambocoeliidae. Genus includes new species C. rarus.

Cirpa lucentina[76]

Sp. nov

Valid

Baeza-Carratalá & García Joral

Early Jurassic (Pliensbachian)

Gavilán Formation

Spain

A member of Rhynchonellida belonging to the family Wellerellidae.

Clorinda cappsi[77]

Sp. nov

Valid

Blodgett, Baranov & Santucci

Devonian (Emsian)

Shellabarger Limestone

United States
( Alaska)

A member of Pentamerida belonging to the group Pentameridina and the family Clorindidae.

Costirhynchopsis xui[78]

Sp. nov

Valid

Guo et al.

Middle Triassic (Anisian)

China

Costistriispira[64]

Gen. et sp. nov

In press

Popov & Cocks

Ordovician (Sandbian)

Kopkurgan Formation

Kazakhstan

A member of Lissatrypoidea belonging to the family Kellerellidae. The type species is C. proavia.

Crenulatomargus[78]

Gen. et sp. nov

Valid

Guo et al.

Middle Triassic (Anisian)

China

Genus includes new species C. terebratuliformis.

Cuninulus eulenbergensis[79]

Sp. nov

Valid

Wenndorf

Devonian

Germany

A member of Rhynchonellida belonging to the family Nucinulidae.

Cuninulus filiplicatus[79]

Sp. nov

Valid

Wenndorf

Devonian (Emsian)

A member of Rhynchonellida belonging to the family Nucinulidae.

Cuninulus trostiensis[79]

Sp. nov

Valid

Wenndorf

Devonian

Germany

A member of Rhynchonellida belonging to the family Nucinulidae.

Cuninulus vitelliacensis[79]

Sp. nov

Valid

Wenndorf

Devonian (Emsian)

Germany

A member of Rhynchonellida belonging to the family Nucinulidae.

Doughlatomena[64]

Gen. et sp. nov

In press

Popov & Cocks

Ordovician

Kazakhstan

A member of the family Rafinesquinidae. The type species is D. splendens.

Eiratrypa[80]

Gen. et comb. nov

Unavailable

Baarli

Silurian (Aeronian and Telychian)

Norway
Russia
Sweden
United Kingdom

A member of the family Atrypidae. The type species is "Protatrypa" thorslundi Boucot & Johnson (1964); genus also includes "Atrypa" orbicularis Sowerby (1839) and "Atrypa" antiqua Kulkov in Kulkov & Severgina (1989). The name is not unavailable as the e-publication lacks proof of registration in ZooBank.

Eoanastrophia tozodoviensis[81]

Sp. nov

Valid

Shcherbanenko & Sennikov

Late Ordovician

Russia

A member of Pentamerida.

Eodmitria briceae[68]

Sp. nov

In press

García-Alcalde

Devonian (Givetian or Frasnian)

Candás Formation

Spain

A member of Spiriferida belonging to the family Cyrtospiriferidae.

Eucalathis davidi[82]

Sp. nov

Valid

Dulai

Pliocene

Italy

A species of Eucalathis.

Eucalathis dorae[82]

Sp. nov

Valid

Dulai

Pliocene

Italy

A species of Eucalathis.

Fuchsinulus[79]

Gen. et comb. sp. nov

Valid

Wenndorf

Devonian

Germany

A member of Rhynchonellida belonging to the family Nucinulidae. Genus includes F. mediorhenanus (Fuchs, 1912) and F. furcaradiatus (Dahmer, 1923), as well as new species F. lahnsteinensis.

Glosseudesia inexpectata[83]

Sp. nov

Mojon in Mojon & De Kaenel

Early Cretaceous (Barremian)

Saars Formation

Switzerland

Hirnantia notiskuani[84]

Sp. nov

Valid

Zimmt & Jin

Ordovician (Hirnantian)

Ellis Bay Formation

Canada
( Quebec)

A member of Enteletoidea belonging to the family Draboviidae.

Ivdelinia (Ivdelinia) tweeti[77]

Sp. nov

Valid

Blodgett, Baranov & Santucci

Devonian (Emsian)

Shellabarger Limestone

United States
( Alaska)

A member of Pentamerida belonging to the group Pentameridina and the family Gypidulidae.

Jakutoproductus japonicus[67]

Sp. nov

Valid

Tazawa in Tazawa & Shintani

Permian (Sakmarian)

Japan

A member of Productida belonging to the family Avoniidae.

Kallirhynchia radulovici[72]

Sp. nov

Valid

Feldman, Blodgett & Wilson

Middle Jurassic (Callovian)

Matmor Formation

Israel

A member of Rhynchonellida.

Kassinella simorini[64]

Sp. nov

In press

Popov & Cocks

Ordovician

Kopkurgan Formation

Kazakhstan

Lahninulus[79]

Gen. et 3 sp. nov

Valid

Wenndorf

Devonian

Germany

A member of Rhynchonellida belonging to the family Nucinulidae. Genus includes new species L. emsensis, L. flabelliplicatus and L. steinmeyeri.

Lapinulus eichelei[79]

Sp. nov

Valid

Wenndorf

Devonian (Emsian)

A member of Rhynchonellida belonging to the family Nucinulidae.

Lapinulus frankei[79]

Sp. nov

Valid

Wenndorf

Devonian

Germany

A member of Rhynchonellida belonging to the family Nucinulidae.

Lapinulus haigerensis[79]

Sp. nov

Valid

Wenndorf

Devonian (Emsian)

Germany

A member of Rhynchonellida belonging to the family Nucinulidae.

Lapinulus? leudersdorfensis[79]

Sp. nov

Valid

Wenndorf

Devonian

Germany

A member of Rhynchonellida belonging to the family Nucinulidae.

Lapinulus? molliformis[79]

Sp. nov

Valid

Wenndorf

Devonian

Germany

A member of Rhynchonellida belonging to the family Nucinulidae.

Lapinulus pila luxemburgensis[79]

Ssp. nov

Valid

Wenndorf

Devonian (Emsian)

A member of Rhynchonellida belonging to the family Nucinulidae.

Lapinulus pila taunusiensis[79]

Ssp. nov

Valid

Wenndorf

Devonian (Emsian)

Germany

A member of Rhynchonellida belonging to the family Nucinulidae.

Leiorhynchoidea perrilliatae[63]

Sp. nov

Valid

Torres-Martínez & Sour-Tovar

Carboniferous (Moscovian)

Ixtaltepec Formation

Mexico

A member of Rhynchonellida belonging to the superfamily Pugnacoidea and the family Petasmariidae.

Lepidomena betpakdalensis[64]

Sp. nov

In press

Popov & Cocks

Ordovician

Baigara Formation

Kazakhstan

Lepismatina? inusitata[78]

Sp. nov

Valid

Guo et al.

Middle Triassic (Anisian)

China

Lictorthis[64]

Gen. et comb. nov

In press

Popov & Cocks

Ordovician

Kazakhstan

A member of the family Plectorthidae. The type species is "Plectorthis" licta Popov & Cocks (2006).

Linoproductus huananensis[70]

Sp. nov

Valid

Wu et al.

Permian (Wuchiapingian)

Shuizhutang Formation

China

Lydirhyncha[64]

Gen. et comb. nov

In press

Popov & Cocks

Ordovician

China
Kazakhstan

A member of the family Ancistrorhynchidae. The type species is "Rhynchotrema" zhejiangensis Wang in Wang & Jin (1964); genus also includes "Rhynchotrema" gushanensis Liang in Liu et al. (1983) and "Rhynchotrema" tarimensis Sproat & Zhan (2018).

Megerlina lesterkingi[75]

Sp. nov

Valid

Cooper

Miocene

Monzi Formation

South Africa

A species of Megerlina.

Micopisticospirifer[62]

Gen. et sp. nov

Valid

Baranov & Blodgett

Devonian (Eifelian)

United States
( Alaska)

A member of Spiriferida belonging to the superfamily Ambocoelioidea and the family Ambocoeliidae. Genus includes new species M. simplex.

Pentagonospirifer[85]

Gen. et sp. nov

Valid

Serobyan et al.

Devonian (Famennian)

Armenia

A cyrtospiriferid brachiopod. The type species is P. abrahamyanae.

Permophricodothyris flata[70]

Sp. nov

Valid

Wu et al.

Permian (Wuchiapingian)

Shuizhutang Formation

China

Phaceloorthis? corrugata[64]

Sp. nov

In press

Popov & Cocks

Ordovician

Kazakhstan

Piarorhynchella selongensis[86]

Sp. nov

Valid

Wang & Chen in Wang et al.

Early Triassic

China

Proconchidium schleyi[87]

Sp. nov

Valid

Jin et al.

Late Ordovician

Greenland

Prodavidsonia ebbighauseni[88]

Sp. nov

Valid

Halamski & Baliński in Halamski, Baliński & Koppka

Devonian (Eifelian)

Taboumakhlouf Formation

Morocco

A member of the family Davidsoniidae.

Qilianoconcha circularis[78]

Sp. nov

Valid

Guo et al.

Middle Triassic (Anisian)

China

Retimarginifera auriculata[65]

Sp. nov

Valid

Viaretti et al.

Permian (Kungurian)

Batain Group

Oman

A member of Productida belonging to the family Productellidae.

Rhynchogilviella[74]

Nom. nov

Ceccolini & Cianferoni

Devonian

Australia
Canada
Russia

A member of Rhynchonellata belonging to the group Atrypida and the family Atrypinidae; a replacement name for Ogilviella Lenz (1968).

Rhyncholeptospira[74]

Nom. nov

Ceccolini & Cianferoni

Devonian

United States
( New York)

A member of Athyridida belonging to the family Rhynchospirinidae; a replacement name for Leptospira Boucot, Johnson & Staton (1964).

Schwagerispira cheni[86]

Sp. nov

Valid

Wang & Chen in Wang et al.

Early Triassic

China

Schwagerispira elegans[78]

Sp. nov

Valid

Guo et al.

Middle Triassic (Anisian)

China

Selongthyris[86]

Gen. et sp. nov

Valid

Wang & Chen in Wang et al.

Early Triassic

China

Genus includes new species S. plana.

Sonculina baigarensis[64]

Sp. nov

In press

Popov & Cocks

Ordovician

Kazakhstan

Sphriganaria anyamiae[89]

Sp. nov

Feldman, Radulović & Ahmad

Middle Jurassic (Callovian)

Mughanniyya Formation

Jordan

Spinatrypa ennigaldinannae[88]

Sp. nov

Valid

Halamski & Baliński in Halamski, Baliński & Koppka

Devonian (Eifelian)

Taboumakhlouf Formation

Morocco

A member of the family Atrypidae.

Spiriarchboldiella[74]

Nom. nov

Ceccolini & Cianferoni

Permian

Indonesia

A member of Spiriferida belonging to the family Spiriferellidae; a replacement name for Archboldiella Winkler Prins (2008).

Spiriferella posterosulcata[65]

Sp. nov

Valid

Viaretti et al.

Permian (Kungurian-Roadian)

Batain Group

Oman

A member of Spiriferida belonging to the family Spiriferellidae.

Stenoscisma qararensis[65]

Sp. nov

Valid

Viaretti et al.

Permian (Kungurian-Roadian)

Batain Group

Oman

A member of Rhynchonellida belonging to the family Stenoscismatidae.

Tcherskidium lonei[87]

Sp. nov

Valid

Jin et al.

Late Ordovician

United States
( Alaska)

Tenticospirifer? sinuosus[68]

Sp. nov

In press

García-Alcalde

Devonian (Frasnian)

Piñeres Formation

Spain

A member of Spiriferida belonging to the family Cyrtospiriferidae.

Terebratulina savagei[75]

Sp. nov

Valid

Cooper

Miocene

Monzi Formation

South Africa

A species of Terebratulina.

Testaprica alperovichi[64]

Sp. nov

In press

Popov & Cocks

Ordovician

Kazakhstan

Thecidanella[74]

Nom. nov

Ceccolini & Cianferoni

Late Cretaceous

France

A member of Thecideida belonging to the family Thecideidae; a replacement name for Danella Pajaud (1966).

Tianjunospina[78]

Gen. et sp. nov

Valid

Guo et al.

Middle Triassic (Anisian)

China

Genus includes new species T. junheensis.

Tornatospirifer[85]

Gen. et comb. nov

Valid

Serobyan et al.

Devonian (Famennian)

Armenia

A cyrtospiriferid brachiopod. The type species is T. armenicus.

Tyloplecta liannanensis[70]

Sp. nov

Valid

Wu et al.

Permian (Wuchiapingian)

Shuizhutang Formation

China

Waagenoconcha peregoedovi[90]

Sp. nov

Valid

Makoshin

Early Permian

Kubalakh Formation

Russia

A member of Productida.

Brachiopod research

  • Redescription and a study on the phylogenetic affinities of Diandongia pista is published by Wang et al. (2022).[91]
  • A study on the phylogenetic relationships of the Ordovician and Silurian members of Atrypida is published by Baarli, Huang & Maroja (2022).[92]
  • A study on the phylogenetic relationships and biogeography of members of the family Nisusiidae is published by Oh et al. (2022).[93]
  • Evidence indicating that microstructure, maximum thickness and shell spiral characterization can aid taxonomic identification of gigantoproductid brachiopods is published by Mateos-Carralafuente et al. (2022).[94]
  • Description of remains of the rhynchonellid Erymnaria from the early Ypresian-aged Chruteren Member of the Euthal Formation, Switzerland, representing the first known occurrence of the genus in the Chruteren Member, is published by Sulser et al. (2022).[95]

Molluscs

Echinoderms

Newly named echinoderms

Name Novelty Status Authors Age Type locality Location Notes Images

Acriaster aresensis[96]

Sp. nov

Valid

Forner in Forner et al.

Early Cretaceous (Barremian)

Artoles Formation

Spain

A sea urchin belonging to the group Cassiduloida and the family Archiaciidae.

Aliopsis[97]

Gen. et comb. nov

Abdelhamid, Abdelghany & Abu Saima

Late Cretaceous (Maastrichtian)

United Arab Emirates/Oman border region

A sea urchin belonging to the group Arbacioida and the family Acropeltidae. The type species is "Glyphopneustes" hattaensis Ali (1992).

Angulocrinus tomaszi[98]

Sp. nov

Valid

Zamora

Late Jurassic (Oxfordian)

Yatova Formation

Spain

A crinoid belonging to the group Millericrinida and the family Millericrinidae.

Anticostiechinus[99]

Gen. et sp. nov

Valid

Thompson, Ausich & Cournoyer

Silurian

Canada
( Quebec)

A sea urchin belonging to the family Echinocystitidae. Genus includes new species A. petryki.

Arauricystis clariondi[100]

Sp. nov

In press

Lefebvre et al.

Ordovician

Izegguirene Formation

Czech Republic
Morocco

A cornute stylophoran belonging to the family Cothurnocystidae.

Astroblastocystis[101]

Nom. nov

Sałamatin & Kaczmarek

Ordovician

Russia

A replacement name for Blastocystis Jaekel (1918).

Atelestocrinus baumilleri[102]

Sp. nov

Valid

Gahn

Carboniferous (Viséan)

Ramp Creek Formation

United States
( Indiana)

A cladid crinoid belonging to the group Dendrocrinida.

Ausichicrinites[103]

Gen. et sp. nov

Valid

Salamon et al.

Late Jurassic (Tithonian)

Antalo Limestone

Ethiopia

A member of Comatulida. The type species is A. zelenskyyi.

Bohemiaecystis chouberti[100]

Sp. nov

In press

Lefebvre et al.

Ordovician

Morocco

A cornute stylophoran.

Catopygus vilari[104]

Sp. nov

Valid

Forner

Early Cretaceous (Aptian)

Forcall Formation

Spain

A sea urchin belonging to the group Cassiduloida.

Clypeaster surarui[105]

Nom. nov

Valid

Carrasco & Trif

Eocene

Romania

A species of Clypeaster; a replacement name for Clypeaster (Palaeanthus) transsylvanicus Șuraru, Gábos & Șuraru (1967).

Codiacrinus sevastopuloi[106]

Sp. nov

Valid

Ausich et al.

Devonian (Emsian)

Poland

A cyathoform cladid crinoid.

Cyclaster jamiei[107]

Sp. nov

Valid

McNamara & Martin

Eocene

Manypeaks limestone

Australia

A sea urchin belonging to the group Spatangoida and the family Micrasteridae.

Destombesicarpus[100]

Gen. et 2 sp. nov

In press

Lefebvre et al.

Ordovician

Czech Republic
Morocco

A cornute stylophoran belonging to the family Chauvelicystidae. Genus includes new species D. izegguirenensis and D. budili.

Diamphidiocystis regnaulti[108]

Sp. nov

In press

Lefebvre et al.

Ordovician

Czech Republic
France
Morocco

An anomalocystitid mitrate.

Eurhodia westaustraliae[107]

Sp. nov

Valid

McNamara & Martin

Eocene

Nanarup limestone

Australia

A species of Eurhodia.

Exallocrinus[109]

Gen. et sp. nov

In press

Webster, Heward & Ausich

Permian (Wordian)

Khuff Formation

Oman

A crinoid, possibly a member of the family Ampelocrinidae. The type species is E. khuffensis.

Fossulaster susae[107]

Sp. nov

Valid

McNamara & Martin

Eocene

Nanarup limestone

Australia

A sand dollar belonging to the family Fossulasteridae.

Furculaster[110]

Gen. et sp. nov

In press

Gale

Late Cretaceous

Europe

A starfish belonging to the family Korethrasteridae. Genus includes new species F. cretae.

Gillechinus kaitae[107]

Sp. nov

Valid

McNamara & Martin

Eocene

Manypeaks limestone

Australia

A sea urchin belonging to the group Spatangoida and the family Maretiidae.

Habanaster itzae[111]

Sp. nov

In press

Villier et al.

Eocene (Lutetian)

Anotz Formation

Spain

A heart urchin belonging to the family Ovulasteridae.

Kutscheraster[110]

Gen. et sp. nov

In press

Gale

Late Cretaceous (Maastrichtian)

Germany

A starfish belonging to the group Velatida. Genus includes new species K. ruegenensis.

Milonicystis reboulorum[100]

Sp. nov

In press

Lefebvre et al.

Ordovician

Morocco

A cornute stylophoran.

Muldaster[112]

Gen. et sp. nov

Valid

Thuy, Eriksson & Numberger-Thuy in Thuy et al.

Silurian (Wenlock)

Halla Formation

Sweden

A brittle star. The type species is M. haakei.

Neobothriocidaris pentlandensis[113]

Sp. nov

Valid

Thompson et al.

Silurian

Sweden
United Kingdom

A sea urchin.

Ohiocrinus byeongseoni[114]

Sp. nov

Valid

Park et al.

Ordovician (Darriwilian)

Jigunsan Formation

South Korea

A cincinnaticrinid crinoid.

Ophiobartia[115]

Gen. et sp. nov

Valid

Loba in Loba & Radwańska

Late Jurassic (Kimmeridgian)

Poland

A brittle star belonging to the group Ophiacanthida. The type species is O. radwanskii.

Ophiodoris niersteinensis[116]

Sp. nov

Valid

Thuy, Nungesser & Numberger-Thuy

Oligocene (Rupelian)

Bodenheim Formation

Germany

A brittle star belonging to the family Ophionereididae.

Ophiopetagno[112]

Gen. et sp. nov

Valid

Thuy, Eriksson & Numberger-Thuy in Thuy et al.

Silurian (Wenlock)

Fröjel Formation

Sweden

A brittle star. The type species is O. paicei.

Ophiura pohangensis[117]

Sp. nov

Valid

Ishida et al.

Miocene

Duho Formation

South Korea

A species of Ophiura.

Ophiura tankardi[116]

Sp. nov

Valid

Thuy, Nungesser & Numberger-Thuy

Oligocene (Rupelian)

Bodenheim Formation

Germany

A species of Ophiura.

Oretanocalix julioi[118]

Sp. nov

In press

Paul & Gutiérrez-Marcos

Ordovician (Darriwilian)

Navas de Estena Formation

Spain

A member of Diploporita belonging to the family Aristocystitidae.

Orthopsis kiseljaki[119]

Sp. nov

Valid

Stecher

Late Triassic (Rhaetian)

Kössen Formation

Austria

A sea urchin belonging to the group Carinacea and the family Orthopsidae.

Parahybocrinus[120]

Gen. et sp. nov

Valid

Guensburg & Sprinkle

Ordovician (Floian)

Fillmore Formation

United States
( Utah)

A cladid crinoid belonging to the group Hybocrinida. The type species is P. siewersi.

Peedeeaster[121]

Gen. et sp. nov

Valid

Mah

Late Cretaceous (Maastrichtian)

Peedee Formation

United States
( North Carolina)

A starfish belonging to the family Goniasteridae. The type species is P. sandersoni.

Pteraster angulatus[110]

Sp. nov

In press

Gale

Late Cretaceous

Europe

A starfish, a species of Pteraster.

Pteraster balticus[110]

Sp. nov

In press

Gale

Late Cretaceous (Maastrichtian)

Germany

A starfish, a species of Pteraster.

Pteraster cretachiton[110]

Sp. nov

In press

Gale

Late Cretaceous

Europe

A starfish, a species of Pteraster.

Pteraster kutscheri[110]

Sp. nov

In press

Gale

Late Cretaceous (Campanian[122] and Maastrichtian)

Germany
United Kingdom[122]

A starfish, a species of Pteraster.

Pteraster lyddenensis[122]

Sp. nov

Valid

Gale

Late Cretaceous (Cenomanian)

Grey Chalk Subgroup of the Chalk Group

United Kingdom

A starfish, a species of Pteraster. Published online in 2022, but the issue date is listed as February 2023.[122]

Pteraster nudus[110]

Sp. nov

In press

Gale

Late Cretaceous

United Kingdom

A starfish, a species of Pteraster.

Pteraster paucispinus[110]

Sp. nov

In press

Gale

Late Cretaceous (Maastichtian)

Germany

A starfish, a species of Pteraster.

Pteraster seafordensis[110]

Sp. nov

In press

Gale

Late Cretaceous (Coniacian–Santonian)

United Kingdom

A starfish, a species of Pteraster.

Pteraster turoniense[110]

Sp. nov

In press

Gale

Late Cretaceous (Turonian)

Bridgwick Marl

France
United Kingdom

A starfish, a species of Pteraster.

Sprinkleoglobus[123]

Gen. et sp. et comb. nov

Valid

Zhao et al.

Cambrian

Maotianshan Shale
Member of the Yu’anshan Formation

China
United States
( Utah)

A member of Edrioasteroidea, possibly belonging to Edrioasterida. The type species is S. extenuatus; genus also includes "Totiglobus" lloydi Sprinkle (1985).

Syndiasmocrinus[120]

Gen. et sp. nov

Valid

Guensburg & Sprinkle

Ordovician (Floian)

Ninemile Formation

United States
( Nevada
 Utah)

A cladid crinoid belonging to the group Hybocrinida. The type species is S. apokalypto.

Thoralicarpus[100]

Gen. et 2 sp. et comb. nov

In press

Lefebvre et al.

Ordovician

Czech Republic
France
Morocco
Spain

A cornute stylophoran belonging to the family Scotiaecystidae. Genus includes new species T. bounemrouensis and T. prokopi, as well as "Bohemiaecystis" jefferiesi Gil Cid et al. (1996) and "Scotiaecystis" guilloui Lefebvre & Vizcaïno (1999).

Triadoleucella[124]

Gen. et sp. nov

Ishida et al.

Late Triassic (Carnian)

Vietnam

A brittle star belonging to the group Ophioleucida. Genus includes new species T. meensis. Published online in 2022, but the issue date is listed as April 2023.[124]

Yorkicystis[125][126]

Gen. et sp. nov

Zamora et al.

Cambrian

Kinzers Formation

United States
( Pennsylvania)

An edrioasteroid. The type species is Y. haefneri.

Zygocycloides? foerstei[127]

Sp. nov

Valid

Ausich & Zehler

Silurian (Aeronian)

Brassfield Formation

United States
( Ohio)

A member of Cyclocystoidea belonging to the family Cyclocystoididae.

Echinoderm research

  • A study on the evolution of the anatomy and life habits of Cambrian–Ordovician echinoderms is published by Novack-Gottshall et al. (2022).[128]
  • A study on the morphology of the internal bars in Lagynocystis pyramidalis and Jaekelocarpus oklahomensis, reevaluating the evidence for gill bars in stylophorans, is published by Álvarez-Armada et al. (2022).[129]
  • A study on dispersal patterns and morphological changes in sphaeronitid diploporans across the Ordovician–Silurian boundary is published by Sheffield et al. (2022).[130]
  • A study on the morphology and paleoecology of calceocrinid crinoids is published by Ausich (2022).[131]
  • A study on the phylogeny and divergence times of major lineages of sea urchins, comparing phylogenomic data with the fossil record, is published by Mongiardino Koch et al. (2022).[132]
  • Redescription of
    Cantabrigiaster fezouataensis is published by Blake & Hotchkiss (2022), who synonymize the genus Cantabrigiaster with the chinianasterid somasteroid genus Villebrunaster, and consider the interpretations of a close phylogenetic linkage between crinoids and starfish and an edrioasteroid ancestry of starfish to be inadequately supported.[133]

Hemichordates

Name Novelty Status Authors Age Type locality Location Notes Images

Acrograptus(?) artus[134]

Sp. nov

Maletz

Ordovician (Floian)

Sweden

A

graptolite
.

Anjigraptus[135]

Gen. et sp. nov

Valid

Muir et al.

Ordovician (Hirnantian)

China

A graptolite. The type species is A. wangi.

Hemichordate research

Conodonts

New taxa

Name Novelty Status Authors Age Type locality Location Notes Images

Amorphognathus viirae[137]

Sp. nov

Paiste, Männik & Meidla

Ordovician (Sandbian)

Estonia
Sweden
Poland?
United States?

Belodella salairica[138]

Sp. nov

Valid

Izokh

Devonian

Russia

Caudicriodus yolkini[138]

Sp. nov

Valid

Izokh

Devonian

Russia

Condorodus[139]

Gen. et 3 sp. nov

Valid

Carlorosi, Mestre & Heredia

Ordovician

San Juan Formation

Argentina

The type species is C. chilcaensis; genus also includes C. diablensis and C. gracielae.

Discretella pseudodieneri[140]

Sp. nov

Leu & Goudemand in Leu et al.

Early Triassic

Luolou Formation

China
Japan

A member of the family Gondolellidae belonging to the subfamily Mullerinae.

Heckelina[141]

Gen. et comb. nov

Barrick, Hogancamp & Rosscoe

Carboniferous (Pennsylvanian)

China
Russia
Ukraine
United States

Genus includes "Streptognathodus" simulator Ellison (1941), "Streptognathodus" praenuntius Chernykh (2005), "Streptognathodus" auritus Chernykh (2005), "Idiognathodus" eudoraensis Barrick, Heckel & Boardman (2008), "Idiognathodus" lateralis Hogancamp, Barrick & Straussand (2016) and "Idiognathodus" abdivitus Hogancamp & Barrick (2018).

Icriodus olgaborisovnae[142]

Sp. nov

Valid

Nazarova & Kononova

Devonian (Eifelian)

Russia

Idiognathodus praeguizhouensis[143]

Sp. nov

Valid

Hu, Qi & Wang

Carboniferous (Pennsylvanian)

China

Juanognathus? denticulatus[144]

Sp. nov

Valid

Zhen, Allen & Martin

Early Ordovician

Nambeet Formation

Australia

Neospathodus bevelledi[140]

Sp. nov

Leu & Goudemand in Leu et al.

Early Triassic

Luolou Formation

China
Japan
Oman
Vietnam

A member of the family Gondolellidae belonging to the subfamily Neogondolellinae.

Novispathodus gryphus[140]

Sp. nov

Leu & Goudemand in Leu et al.

Early Triassic

Luolou Formation

China

A member of the family Gondolellidae belonging to the subfamily Novispathodinae.

Novispathodus praebrevissimus[140]

Sp. nov

Leu & Goudemand in Leu et al.

Early Triassic

Luolou Formation

China
Norway
Oman

A member of the family Gondolellidae belonging to the subfamily Novispathodinae.

Palmatolepis adorfensis[145]

Sp. nov

Valid

Saupe & Becker

Devonian (Frasnian)

Australia
Belgium
Germany
Morocco

Palmatolepis descendens[145]

Sp. nov

Valid

Saupe & Becker

Devonian (Frasnian)

China
Germany

Palmatolepis jamieae rosa[145]

Ssp. nov

Valid

Saupe & Becker

Devonian (Frasnian)

Belgium
China
Germany
Russia

Palmatolepis jamieae savagei[145]

Ssp. nov

Valid

Saupe & Becker

Devonian (Frasnian)

China
Germany
Morocco
Russia

Protognathodus semikockeli[146]

Sp. nov

Valid

Hartenfels et al.

Devonian-Carboniferous transition

Algeria
Austria
Belgium
China
France
Germany
Iran
Italy
Poland
Russia
Spain
United States
Czech Republic?
United Kingdom?

Siphonodella vladimirovi[147]

Nom. nov

Valid

Plotitsyn

Early Carboniferous

Russia
Tajikistan

A member of the family Elictognathidae; a replacement name for Siphonodella diagonalica Pazukhin (1989).

Urdyella[140]

Gen. et. 2 sp. nov

Unavailable

Leu & Goudemand in Leu et al.

Early Triassic

Luolou Formation

China
India
Oman
United States
( Utah)

A member of the family Gondolellidae belonging to the subfamily Cornudininae. The type species is U. unicorna; genus also includes U. tridenta. The name is not available because the article lacks evidence of registering in ZooBank

Research

  • A study on the material properties of bioapatite in multiple elements in the coniform-bearing apparatus of Dapsilodus obliquicostatus, representing different ontogenetic stages of development, is published by Shohel et al. (2022).[148]
  • Redescription of Histiodella labiosa and a study on the phylogenetic affinities of members of the genus Histiodella is published by Zhen, Bauer & Bergström (2022).[149]
  • A study aiming to determine whether co-occurring Silurian conodont species from the Gotland succession in Sweden occupied different trophic niches is published by Terrill et al. (2022).[150]
  • A synthesis on the conodont occurrences along northern Gondwana at the Silurian/Devonian boundary is published by Ferretti et al. (2022).[151]
  • A study on the morphological variation of elements of the apparatus of Icriodus alternatus is published by Girard et al. (2022), who interpret their findings as indicating that subspecies of this species described for the end Frasnian and early Famennian constitute end-member morphologies characterizing different growth stages.[152]
  • A study comparing conodont diversity dynamics in Northeast Laurussia and Northeast Siberia during the Tournaisian, and evaluating its implications for the knowledge of the causes of the extinction among conodonts during the middle–late Tournaisian transition, is published by Zhuravlev & Plotitsyn (2022).[153]
  • A study on the apparatus composition of Lochriea commutata, and on its implications for the assignments of other Carbonifeous conodont species to the genus Lochriea, is published by von Bitter, Norby & Stamm (2022).[154]
  • Evidence indicative of impact of ocean temperature changes on the morphology of conodont elements during the Devonian-Carboniferous transition and the Carnian-Norian transition is presented by Souquet et al. (2022).[155]

Fish

Amphibians

New taxa

Name Novelty Status Authors Age Type locality Location Notes Images

Albanerpeton ektopistikon[156]

Sp. nov

Valid

Carrano et al.

Early Cretaceous

Cloverly Formation

United States
( Wyoming)

Baurubatrachus santosdoroi[157]

Sp. nov

Valid

Muzzopappa et al.

Late Cretaceous

Adamantina Formation

Brazil

Buettnererpeton[158]

Gen. et comb. nov

Valid

Gee & Kufner

Late Triassic

Dockum Group

Canada
( Nova Scotia)
United States
( Texas)

A metoposaurid temnospondyl. The type species is "Buettneria" bakeri Case (1931).

Calyptocephalella sauzalensis[159]

Sp. nov

Nicoli et al.

Miocene

El Sauzal Formation

Argentina

A species of Calyptocephalella.

Chemnitzion[160]

Gen. et sp. nov

In press

Werneburg et al.

Permian (SakmarianArtinskian transition)

Leukersdorf Formation

Germany

A zatracheid temnospondyl. The type species is C. richteri.

Cretadhefdaa[161]

Gen. et sp. nov

Valid

Lemierre & Blackburn

Late Cretaceous (Cenomanian)

Kem Kem Group (Douira Formation)

Morocco

A neobatrachian frog with possible hyloid affinities. The type species is C. taouzensis.

Marmorerpeton wakei[162]

Sp. nov

Valid

Jones et al.

Middle Jurassic

Kilmaluag Formation

United Kingdom

A member of the family Karauridae.

Nagini[163]

Gen. et sp. nov

Valid

Mann, Pardo & Maddin

Carboniferous

Francis Creek Shale

United States
( Illinois)

A

Molgophidae
. The type species is N. mazonense.

Rhinella xerophylla[164]

Sp. nov

In press

Ponssa et al.

Late Pliocene

Uquía Formation

Argentina

A toad, a species of Rhinella.

Termonerpeton[165]

Gen. et sp. nov

Valid

Clack, Smithson & Ruta

Carboniferous (Viséan)

Bathgate Hills Volcanic Formation

United Kingdom

A tetrapod of uncertain affinities, probably a stem-amniote. The type species is T. makrydactylus.

Research

  • A study on the bone histology of Whatcheeria deltae is published by Whitney et al. (2022), who interpret their findings as indicating that juveniles of W. deltae grew rapidly and reached skeletal maturity quickly.[166]
  • A study on the anatomy of the Carboniferous temnospondyl specimen from the Joggins Fossil Cliffs (Nova Scotia, Canada) referred to Dendrysekos helogenes is published by Arbez, Atkins & Maddin (2022), who consider the genus Dendrysekos to be likely junior synonym of Dendrerpeton.[167]
  • A study aiming to test whether the hindlimb of Eryops megacephalus may have been capable of salamander-like hindlimb configurations is published by Herbst, Manafzadeh & Hutchinson (2022).[168]
  • A study aiming to determine the body mass of Eryops megacephalus and Paracyclotosaurus davidi is published by Hart, Campione & McCurry (2022).[169]
  • Fossil material of large-bodied capitosaurs and a plagiosaurid is described from the Middle Triassic Fremouw Formation (Antarctica) by Gee & Sidor (2022), who also interpret the historic material from the Fremouw Formation attributed to Trematosauria as exhibiting features indicative of capitosaurian affinities.[170]
  • Redescription of Platycepsion wilkinsoni is published by Witzmann & Schoch (2022), who interpret this brachyopid as a true larva, demonstrating the presence of a larval stage in stereospondyls.[171]
  • New fossil material of Trematolestes hagdorni, providing new information on the ontogeny and adult anatomy of this temnospondyl, is described by Schoch & Mujal (2022).[172]
  • A study on the bone compactness in the pectoral girdle of Metoposaurus krasiejowensis is published by Kalita et al. (2022), who interpret their findings as indicating that compact anterior end of the interclavicles along with the heavy skull of this metoposaurid could have acted as ballast for hydrostatic buoyancy control by shifting the center of mass anteriorly.[173]
  • A study on the tooth microstructure of Metoposaurus krasiejowensis is published by Weryński & Kędzierski (2022), who report the presence of possible predatory adaptations, as well as evidence of seasonal influence on dental histology.[174]
  • Surmik et al. (2022) describe a pathological vertebral intercentrum of Metoposaurus krasiejowensis and diagnose this specimen as affected by osteosarcoma, representing the first unambiguous record of primary malignant bone tumour in a Mesozoic non-amniote.[175]
  • Redescription of Parioxys ferricolus is published by Schoch & Sues (2022).[176]
  • A study on the histology of the dorsal blades of Platyhystrix rugosus is published by Bowler, Sumida & Huttenlocker (2022).[177]
  • A study on the phylogenetic relationships of members of Amphibamiformes is published by Schoch (2022).[178]
  • Revision of the fossil record of Caudata in the Palearctic realm and a study on the biogeographical history of the group is published by Macaluso et al. (2022).[179]
  • A study on the palates of extant and fossil salamanders is published by Jia, Li & Gao (2022), who interpret their findings as indicating that palatal morphology is a reliable proxy in ecological reconstructions for early salamanders.[180]
  • An incomplete salamander dentary, possibly representing a previously unknown genus and species of batrachosauroidid, is described from the Maastrichtian Lance Formation (Wyoming, United States) by Gardner (2022).[181]
  • Skutschas et al. (2022) describe a fragmentary trunk vertebra of a crown salamander from the Bathonian Moskvoretskaya Formation (Moscow Oblast, Russia), potentially representing the oldest record of a member of Salamandroidea reported to date.[182]
  • A study on the phylogenetic relationships of extant and extinct members of the family Ceratophryidae is published by Barcelos et al. (2022).[183]
  • Fossil material of a toad belonging or related to the genus Rhinella is described from the
    Cura-Mallín Formation (Chile) by Guevara et al. (2022), representing the southernmost fossil record of Bufonidae in South America for the Miocene reported to date.[184]
  • A study on the
    discosauriscid specimens known from this area, and likely evidence of a habitat shift that occurred relatively late in the ontogenetic development of discosauriscids.[185]
  • A study on the anatomy and pattern of replacement of teeth in Seymouria is published by Maho & Reisz (2022).[186]
  • Jansen & Marjanović (2022) study the microanatomy of the limb bones and axial skeleton of Batropetes palatinus, infer a terrestrial lifestyle for the taxon that involved digging but not outright burrowing, and argue that the presence of strengthened forelimbs in Triadobatrachus in spite of its lack of the ability to jump might have been a former adaptation to forelimb-based digging that made jumping of later anurans possible by exaptation.[187]

Reptiles

Synapsids

General research

  • A study on the morphological diversity of synapsid skulls is published by Marugán-Lobón, Gómez-Recio & Nebreda (2022).[188]

Non-mammalian synapsids

New taxa

Name Novelty Status Authors Age Type locality Location Notes Images

Bienotheroides xingshanensis[189]

Sp. nov

Valid

Liu et al.

Middle Jurassic

Shaximiao Formation

China

A

cynodont
.

Cifellilestes[190] Gen. et sp. nov Valid Davis et al. Late Jurassic (Tithonian) Morrison Formation United States A morganucodontan. The type species is C. ciscoensis.
Eoscansor[191] Gen. et sp. nov Valid Lucas et al. Carboniferous (Pennsylvanian) El Cobre Canyon Formation United States ( New Mexico) A varanopid. The type species is E. cobrensis.

Euchambersia liuyudongi[192]

Sp. nov

Liu & Abdala

Permian (Wuchiapingian)

Naobaogou Formation

China

A therocephalian.

Skull (a, c, e, f)

Guttigomphus[193]

Gen. et sp. nov

Valid

Rayner et al.

Probably Middle Triassic (Anisian)

Burgersdorp Formation

South Africa

A trirachodontid cynodont. The type species is G. avilionis.

Kembawacela yajuwayeyi[194] Sp. nov Araújo et al. Permian (Wuchiapingian) Chiweta Beds Malawi A
dicynodont belonging to the family Cistecephalidae
.

Koksharovia[195]

Gen. et sp. nov

Valid

Suchkova, Golubev & Shumov

Permian

Russia
( Kirov Oblast)

A therocephalian. The type species is K. grechovi. Published online in 2023, but the issue date is listed as December 2022.[195]

Lalieudorhynchus[196]

Gen. et sp. nov

In press

Werneburg et al.

Permian (Roadian/Wordian to early Capitanian)

La Lieude Formation

France

A caseid. The type species is L. gandi.

Notictoides[197]

Gen. et sp. nov

Sidor, Kulik & Huttenlocker

Early Triassic

Fremouw Formation

Antarctica

A therocephalian. Genus includes new species N. absens.

Phorcys[198]

Gen. et sp. nov

In press

Kammerer & Rubidge

Middle Permian (Wordian-Capitanian
)

Abrahamskraal Formation

South Africa

An early

gorgonopsian
. The type species is P. dubei.

Tessellatia[199]

Gen. et sp. nov

Gaetano et al.

Late Triassic (Norian)

Los Colorados Formation

Argentina

A cynodont belonging to the group Probainognathia. The type species is T. bonapartei.

Research

  • An overview of the evolution of the brain, sensory organs and behaviour in non-mammalian synapsids is published by Benoit et al. (2022).[200]
  • A study on the anatomy of the skull of Cotylorhynchus romeri is published by Reisz, Scott & Modesto (2022).[201]
  • Evidence of serrations on the tooth crowns (possibly reflecting hypercarnivory), as well as rapid rates of development and reduced longevity of the functional teeth in Mesenosaurus efremovi from the Richards Spur locality (Oklahoma, United States) is presented by Maho et al. (2022).[202]
  • A study on the functional loading regime of the fore- and hindlimb skeleton and the body stem of
    therapsids, and on its implications for the knowledge of the shift from sprawling to parasagittal locomotion in therapsids, is published by Preuschoft, Krahl & Werneburg (2022).[203]
  • Fossil material of Dicynodon angielczyki is described from the Metangula Graben (Mozambique) and Luangwa Basin (Zambia) by Kammerer et al. (2022), representing the first specimens referable to this species found outside the Ruhuhu Basin (Tanzania).[204]
  • A study on the anatomy of the basicranial axis of emydopoid dicynodonts is published by Macungo et al. (2022), who provide evidence for fossorial adaptations of the basicranium in the studied taxa, and interpret these adaptations as supporting a head-lift digging behaviour for at least some cistecephalids.[205]
  • A study aiming to determine whether the fossil material of Lystrosaurus from Antarctica, South Africa, India and China conforms to Bergmann's rule is published by Kulik & Sidor (2022).[206]
  • New material of the dicynodonts Shaanbeikannemeyeria and Parakannemeyeria, providing a re-description of the morphology and taxonomy of the former taxon, is described from the Middle Triassic Ermaying Formation (Ordos Basin, Shaanxi, China) by Jun Liu (2022).[207]
  • Description of the anatomy of the mandible of Dinodontosaurus brevirostris, based on data from new specimens from the Chañares Formation (Argentina), and a study reevaluating the phylogenetic affinities of this species with the inclusion of the mandibular data is published by Escobar et al. (2022).[208]
  • Sidor (2022) describes articulated pedes of a small gorgonopsian from the upper Permian upper Madumabisa Mudstone Formation (Zambia).[209]
  • A gorgonopsian specimen is described from the Wutonggou Formation (Turpan Basin, Xinjiang, China) by Liu & Yang (2022), who interpret this specimen as indicating that gorgonopsians survived in northern warm temperate zone about ~253.3 million years ago, contemporaneous with the latest records from Russia and South Africa.[210]
  • Presence of mammal-like sternum is reported in a specimen of Gorgonops torvus from the Wuchiapingian of South Africa by Bendel et al. (2022), representing the earliest record of such sternum in a synapsid reported to date.[211]
  • A study on the pattern of tooth replacement in Cynosaurus suppostus, based on data from five specimens inferred to represent an ontogenetic growth series, is published by Norton et al. (2022).[212]
  • A study on the bone histology of Massetognathus pascuali and Probainognathus jenseni, providing evidence of uninterrupted growth pattern in Massetognathus and cyclical growth in Probainognathus, is published by Garcia Marsà, Agnolín & Novas (2022).[213]
  • A study aiming to determine the body mass of Andescynodon mendozensis, Pascualgnathus polanskii, Massetognathus pascuali, Cynognathus crateronotus and Exaeretodon argentinus on the basis of linear measurements and circumferences of postcranial elements of specimens from Triassic units of the Ischigualasto-Villa Union Basin (Argentina) is published by Filippini, Abdala & Cassini (2022).[214]
  • New fossil material of Santacruzodon hopsoni and Chiniquodon sp., providing new information on the anatomy of the former taxon, is described from the Upper Triassic Santacruzodon Assemblage Zone (Santa Cruz Sequence, Santa Maria Supersequence, Brazil) by Melo, Martinelli & Soares (2022).[215]
  • A study on the cranial ontogeny of Exaeretodon argentinus is published by Wynd, Abdala & Nesbitt (2022), who interpret their findings as likely indicating that E. argentinus underwent a dietary shift toward herbivory during growth.[216]
  • A study on the anatomy and phylogenetic affinities of Lumkuia fuzzi is published by Benoit et al. (2022).[217]
  • New fossil material of Lufengia is described from the Lower Jurassic Lufeng Formation (China) by Liu et al. (2022), who interpret Dianzhongia as described on the basis of fossil material of an older individual of Lufengia.[218]
  • Cabreira et al. (2022) provide evidence indicative of the presence of two sets of teeth falling within a range of wide variations of typically mammalian dental patterns in a Late Triassic cynodont Brasilodon, and interpret this finding as potentially pushing the origin of the biological traits related to the presence of two sets of teeth in modern mammals, such as placentation, endothermy, fur or lactation, back to the Norian.[219]
  • Jäger et al. (2022) present evidence of different morphology and different modes of the occlusion of the molars in Erythrotherium parringtoni and Morganucodon watsoni, and interpret their findings as supporting the classification of these mammaliaforms as distinct taxa.[220]
  • Description of the anatomy of the mandible and teeth of Hadrocodium wui, including new information unavailable from previous fossil preparation, is published by Luo et al. (2022).[221]
  • Araújo et al. (2022) argue that morphological changes to the endolymph-filled semicircular ducts of the inner ear of synapsids were related to changes of their body temperatures, and that endothermy evolved abruptly during the Late Triassic in Mammaliamorpha, with all stem mammaliamorphs likely being ectotherms.[222]

Mammals

Other animals

New taxa

Name Novelty Status Authors Age Type locality Location Notes Images

Acanthochaetetes fischeri[223]

Sp. nov

In press

Schlagintweit et al.

Paleocene (Thanetian)

Khurmala Formation

Iran
Iraq

A demosponge belonging to the family Acanthochaetetidae.

Anguiscolex[224]

Gen. et sp. nov

Valid

García-Bellido & Gutiérrez-Marco

Late Ordovician

Morocco

A palaeoscolecid worm. Genus includes new species A. africanus.

Anjiplectella[225]

Gen. et sp. nov

Botting et al.

Ordovician (Hirnantian)

China

A sponge belonging to the family Euplectellidae. The type species is A. davidipharus.

Anticalyptraea madenensis[226]

Sp. nov

In press

Zatoń et al.

Devonian

Morocco

An anticalyptraeid tubeworm.

Archaeopetasus pachybasalis[227]

Sp. nov

Valid

Kouchinsky in Kouchinsky et al.

Cambrian (

Tommotian
)

Tyuser Formation

Russia
( Sakha)

A chancelloriid.

Boreognathus[228]

Gen. et sp. nov

Shcherbakov, Tzetlin & Zhuravlev

Permian (Kungurian)

Pechora Coal Basin

Russia

A polychaete annelid belonging to the family Atraktoprionidae. Genus includes new species B. pogorevichi.

Buggischicyathus[229]

Gen. et sp. nov

In press

Perejón, Menéndez & Moreno-Eiris in Rodríguez-Martínez et al.

Cambrian Series 2

Mount Wegener Formation

Antarctica

An archaeocyath belonging to the group Ajacicyathida and the family Densocyathidae. The type species is B. microporus.

Cementula radwanskae[230]

Sp. nov

Valid

Słowiński et al.

Middle Jurassic (BathonianCallovian, possibly also Bajocian)

Poland
France?

A polychaete belonging to the family Serpulidae.

Charnia gracilis[231]

Sp. nov

Valid

Wu et al.

Ediacaran

Dengying Formation

China

A rangeomorph.

Clathrodictyon megalamellatum[232]

Sp. nov

Valid

Jeon in Jeon et al.

Ordovician (Katian)

Xiazhen Formation

China

A member of Stromatoporoidea belonging to the group Clathrodictyida.

Conchicolites kroegeri[233]

Sp. nov

Valid

Vinn et al.

Ordovician (Katian)

Hirmuse Formation

Estonia

A member of Cornulitida.

Conchicolites parcecostatis[234]

Sp. nov

Vinn et al.

Ordovician (Katian)

Kõrgessaare Formation

Estonia

A member of Cornulitida.

Conchicolites sutlemaensis[234]

Sp. nov

Vinn et al.

Ordovician (Katian)

Kõrgessaare Formation

Estonia

A member of Cornulitida.

Cornulites lindae[233]

Sp. nov

Valid

Vinn et al.

Ordovician (Katian)

Hirmuse Formation

Estonia

A member of Cornulitida.

Cornulites meidlai[233]

Sp. nov

Valid

Vinn et al.

Ordovician (Katian)

Hirmuse Formation

Estonia

A member of Cornulitida.

Dauritheca[235]

Nom. nov

Valid

Peel & Gubanov

Cambrian

Yuertus Formation

China
Russia
( Zabaykalsky Krai)

A hyolith belonging to the group Orthothecida and the family Triplicatellidae; a replacement name for Pachytheca Qian, Yin & Xiao (2000).

Filogranula spongiophila[230]

Sp. nov

Valid

Słowiński et al.

Late Jurassic (Oxfordian)

Poland

A polychaete belonging to the family Serpulidae.

Germanortmannia[236]

Nom. nov

Valid

Ceccolini & Cianferoni

Late Cretaceous

Germany

A demosponge belonging to the group

Astrophorida
; a replacement name for Ortmannia Schrammen (1924).

Hadimopanella foveata[227]

Sp. nov

Valid

Kouchinsky in Kouchinsky et al.

Cambrian (Cambrian Stage 4)

Erkeket Formation

Russia
( Sakha)

A palaeoscolecid.

Hadimopanella luchininae[237]

Sp. nov

Valid

Novozhilova

Early Cambrian

Russia

A palaeoscolecid.

Iberogilletia[236]

Nom. nov

Valid

Ceccolini & Cianferoni

Early Cretaceous (Aptian)

Spain

A demosponge belonging to the family Corallistidae; a replacement name for Gilletia Lagneau-Herenger (1962).

Inuitiphlaskus[238]

Gen. et sp. nov

In press

Peel

Cambrian (Wuliuan)

Henson Gletscher Formation

Greenland

A total-group priapulid. The type species is I. kouchinskyi.

Lindstroemiella[239]

Gen. et sp. nov

Valid

Zatoń et al.

Silurian (Ludfordian)

Estonia

A member of Tentaculita. Genus includes new species L. eichwaldi.

Metavermilia (Vepreculina) gollieti[240]

Sp. nov

Kočí, Goedert & Jäger

Eocene

Lincoln Creek Formation

United States
( Washington)

A serpulid annelid.

Mieridduryn[241]

Gen. et sp. nov

Valid

Pates et al.

Ordovician (Darriwilian)

Gilwern Volcanic Formation

United Kingdom

An opabiniid-like panarthropod. The type species is M. bonniae.

Nectocollare[242]

Gen. et sp. nov

In press

Botting & Ma

Ordovician

United Kingdom

A sponge, possibly a member of the family Hyalonematidae. Genus includes new species N. zakdouli.

Neodexiospira ferlinghettii[243]

Sp. nov

Valid

Kočí, Goedert & Buckeridge

Early Eocene

Crescent Formation

United States
( Washington)

A polychaete.

Neodexiospira vanslykei[243]

Sp. nov

Valid

Kočí, Goedert & Buckeridge

Late Eocene

Lincoln Creek Formation

United States
( Washington)

A polychaete.

Paragnaltacyathus[229]

Gen. et sp. nov

In press

Perejón, Menéndez & Moreno-Eiris in Rodríguez-Martínez et al.

Cambrian Series 2

Mount Wegener Formation

Antarctica

An archaeocyath belonging to the group Ajacicyathida and the family Ethmocyathidae. The type species is P. hoeflei.

Parvibellus[244]

Gen. et sp. nov

Liu et al.

Cambrian Stage 3

Yu’anshan Formation

China

A stem-arthropod of uncertain affinitites, possibly a siberiid lobopodian.[245] The type species is P. atavus.

Rotundocyathus glacius[229]

Sp. nov

In press

Perejón, Menéndez & Moreno-Eiris in Rodríguez-Martínez et al.

Cambrian Series 2

Mount Wegener Formation

Antarctica

An archaeocyath belonging to the group Ajacicyathida and the family Ajacicyathidae.

Salanytheca daurica[235]

Sp. nov

Valid

Peel & Gubanov

Cambrian Series 2

Bystraya Formation

Russia
( Zabaykalsky Krai)

A hyolith belonging to the group Orthothecida and the family Triplicatellidae.

Sanshapentella tentoriformis[246]

Sp. nov

Yun et al.

Cambrian Stage 3

Shuijingtuo Formation

China

A hexactinellid sponge.

Santelmocyathus[229]

Gen. et sp. nov

In press

Perejón, Menéndez & Moreno-Eiris in Rodríguez-Martínez et al.

Cambrian Series 2

Mount Wegener Formation

Antarctica

An archaeocyath belonging to the group Ajacicyathida and the family Shackletoncyathidae. The type species is S. santelmoi.

Shackletoncyathus[229]

Gen. et sp. nov

In press

Perejón, Menéndez & Moreno-Eiris in Rodríguez-Martínez et al.

Cambrian Series 2

Mount Wegener Formation

Antarctica

An archaeocyath belonging to the group Ajacicyathida and the family Shackletoncyathidae. The type species is S. buggischi.

Spirobranchus limburgicus[247]

Sp. nov

Valid

Kadolsky

Oligocene (Rupelian)

Borgloon Formation

Belgium

A serpulid annelid, a species of Spirobranchus.

Syringodictyon nevadense[248]

Sp. nov

Valid

Stock

Devonian (Emsian)

McColley Canyon Formation

United States
( Nevada)

A member of Stromatoporoidea.

Teutomastophorus[236]

Nom. nov

Valid

Ceccolini & Cianferoni

Late Cretaceous

Germany

A demosponge belonging to the family Theonellidae; a replacement name for Mastophorus Schrammen (1924).

Trinacriarbuscula[236]

Nom. nov

Valid

Ceccolini & Cianferoni

Permian

Italy

A demosponge belonging to the group

Lithistida
; a replacement name for Arbuscula Parona (1933).

Triplicatella uslonica[235]

Sp. nov

Valid

Peel & Gubanov

Cambrian Series 2

Bystraya Formation

Russia
( Zabaykalsky Krai)

A hyolith belonging to the group Orthothecida and the family Triplicatellidae.

Turgidaspongia[249]

Gen. et sp. nov

In press

Li et al.

Ordovician-Silurian boundary

China

A hexactinellid sponge belonging to the family Stiodermatidae. The type species is T. porosa.

Utahnax[250]

Gen. et sp. nov

Valid

Lerosey-Aubril & Ortega-Hernández

Cambrian (Drumian)

United States
( Utah)

A lobopodian. The type species is U. vannieri.

Utaurora[251]

Gen. et sp. nov

Valid

Pates et al.

Cambrian (Drumian)

Wheeler Formation

United States
( Utah)

An opabiniid. The type species is U. comosa.

Wegenercyathus[229]

Gen. et sp. nov

In press

Perejón, Menéndez & Moreno-Eiris in Rodríguez-Martínez et al.

Cambrian Series 2

Mount Wegener Formation

Antarctica

An archaeocyath belonging to the group Ajacicyathida and the family Rudanulidae. The type species is W. sexangulae.

Wronascolex superstes[224]

Sp. nov

Valid

García-Bellido & Gutiérrez-Marco

Late Ordovician

Morocco

A palaeoscolecid worm.

Wufengella[252]

Gen. et sp. nov

Valid

Guo et al.

Cambrian Stage 3

Chiungchussu Formation

China

A tommotiid. The type species is W. bengtsoni.

Research

  • A study on the biomarker composition of gut contents in Ediacaran macrofossils is published by Bobrovskiy et al. (2022), who interpret their findings as indicating that Calyptrina and Kimberella possessed a gut, displayed sterol metabolism comparable to extant invertebrates and fed on green algae and bacteria, while Dickinsonia shows no traces of dietary molecules, indicating a different feeding mode and possible external digestion.[253]
  • A study on the fossil record of Petalonamae, their survival of the Ediacaran–Cambrian transition and the timing and causes of their extinction is published by Hoyal Cuthill (2022).[254]
  • Redescription and a study on the life habits of Pteridinium simplex is published by Darroch et al. (2022).[255]
  • A study on the morphological variation and paleobiology of Fractofusus misrai is published by Taylor et al. (2022).[256]
  • Aragonés Suarez & Leys (2022) propose a method for identifying fossil organisms as sponge grade animals, and apply their method to a putative Ediacaran sponge Thectardis avalonensis.[257]
  • A study on the impact of oxygenation pulses during the Cambrian Radiation on archaeocyath reef communities from the Siberian Platform (Sakha, Russia), indicating that oxygenation events created temporary pulses of evolutionary diversification and enhanced ecosystem complexity, is published by Zhuravlev et al. (2022).[258]
  • Putative late Cambrian archaeocyath Antarcticocyathus webersi is reinterpreted as an anthaspidellid sponge by Lee (2022), leaving no evidence of archaeocyaths surviving beyond the middle Cambrian.[259]
  • Spongiostroma mæandrinum is reinterpreted as a keratosan demosponge by Lee & Riding (2022).[260]
  • Osés et al. (2022) describe exceptionally preserved fossil material of Corumbella werneri from the Ediacaran Tamengo Formation (Brazil), report that Corumbella had a biomineralized skeleton with a cataphract organization of calcareous plates and rings (sclerites) that enhanced flexibility, and interpret Corumbella as the oldest animal with a complex cataphract skeleton with biologically-controlled biomineralization reported to date.[261]
  • Bilaterian trace fossils originally reported from the Ediacaran Tacuarí Formation (Uruguay)[262] are reinterpreted as actually Carboniferous–Permian in age and found in strata belonging to the San Gregorio Formation by Verde et al. (2022).[263]
  • A study on the phylogenetic affinities of Amiskwia sagittiformis is published by Bekkouche & Gąsiorowski (2022), who recover this animal as a stem-group chaetognath within the new clade Cucullophora.[264]
  • Liu et al. (2022) transfer "Ambrolinevitus" ventricosus to the genus Paramicrocornus, erect a new family Paramicrocornidae, and evaluate the implications of paramicrocornids for the knowledge of the evolution of hyoliths.[265]
  • New fossil material of Doliutheca orientalis, providing new information on the anatomy of this hyolith, is described from the Cambrian Shipai Formation (China) by Liu et al. (2022), who place this species in the family Paramicrocornidae.[266]
  • Sun, Zhao & Zhu (2022) describe new fossil material of Glossolites magnus, and interpret its anatomy as indicating that this animal wasn't a hyolith.[267]
  • Description of the internal anatomy of embryos of Markuelia hunanensis from the Cambrian (Furongian) Bitiao Formation (Hunan, China) is published by Dong et al. (2022).[268]
  • Putative early deuterostome Saccorhytus coronarius is reinterpreted as an early ecdysozoan by Liu et al. (2022).[269]
  • Strausfeld et al. (2022) describe the fossilized nervous system of Cardiodictyon catenulum, reporting the presence of an unsegmented head and brain comprising three cephalic domains, each of which aligns with one of three components of the foregut and with a pair of head appendages, and interpreting this finding as indicating that cephalic domains of C. catenulum predate the evolution of the euarthropod head;[270] their conclusions are subsequently contested by Budd et al. (2023).[271][272]
  • Evidence that yunnanozoan branchial arches consisted of cellular cartilage with an extracellular matrix dominated by microfibrils (a feature hitherto considered specific to vertebrates) is presented by Tian et al. (2022), who interpret this finding as supporting the conclusion that yunnanozoans were stem vertebrates;[273] their conclusions are subsequently contested by He et al. (2023)[274] and Zhang & Pratt (2023).[275][276]
  • Redescription and a study on the affinities of
    Molgophidae.[277]
  • Klembara et al. (2022) present a reconstruction of the skull of Diadectes absitus.[278]

Other organisms

New taxa

Name Novelty Status Authors Age Type locality Location Notes Images

Beltanelliformis konovalovi[279]

Sp. nov

Kolesnikov

Ediacaran

Chernyi Kamen Formation

Russia
( Perm Krai
 Sverdlovsk Oblast)

Bursachitina baldonia[280]

Sp. nov

Valid

Nõlvak, Liang & Hints

Ordovician (Darriwilian)

Šakyna Formation

Latvia

A chitinozoan.

Conochitina ulsti[280]

Sp. nov

Valid

Nõlvak, Liang & Hints

Ordovician (Darriwilian)

Šakyna Formation

Latvia

A chitinozoan.

Eremochitina? procera[280]

Sp. nov

Valid

Nõlvak, Liang & Hints

Ordovician (Darriwilian)

Šakyna Formation

Latvia

A chitinozoan.

Ganarake[281]

Gen. et sp. nov

Retallack

Ediacaran

Noonday Formation

United States
( California)

Possible Ediacaran lichen. The type species is G. scalaris.

Glaphyrobalantium[282]

Gen. et sp. nov

Valid

Krings

Early Devonian

Rhynie chert

United Kingdom

An organism of uncertain affinities, possibly a cyanobacterium or microscopic alga. Genus includes new species G. hueberi.

Guangweia[283]

Gen. et sp. nov

Hu et al.

Early Cambrian

China

A frond-like fossil sharing morphological similarities with late Ediacaran frondose organisms. Genus includes new species G. cheni.

Jiumenia[284]

Gen. et sp. nov

Liu & Dong in Liu et al.

Ediacaran-Cambrian

Liuchapo Formation

China

A strip-like fossil. The type species is J. cingula. The genetic name is preoccupied by Jiumenia Yuan (1980).

Longbizuiella[285]

Gen. et sp. nov

In press

Yi et al.

Ediacaran

Liuchapo Formation

China

An organism preserved as a series of uniserially-arranged, uniform-sized, spherical segments, described on the basis of fossils formerly assigned to the genus Horodyskia. The type species is L. hunanensis.

Megasphaerella[286]

Gen. et sp. nov

Valid

Keupp

Early Jurassic (Pliensbachian)

Amaltheenton Formation

Germany

A bivalved calcareous microfossil of uncertain affinities, possibly a member of the family Schizosphaerellaceae. Genus includes new species M. doppelsteini.

Nenoxites irregularis[285]

Sp. nov

In press

Yi et al.

Ediacaran

Liuchapo Formation

China

An organism preserved as uniserially arranged segments, interpret by Yi et al. (2022) as a body fossil rather than a trace fossil.

Nenoxites jishouensis[285]

Sp. nov

In press

Yi et al.

Ediacaran

Liuchapo Formation

China

An organism preserved as serially-arranged, uniform-sized, crescent segments, interpret by Yi et al. (2022) as a body fossil rather than a trace fossil.

Ordinilunulatus[284]

Gen. et comb. nov

Liu & Dong in Liu et al.

Ediacaran-Cambrian

Liuchapo Formation

China

An organism consisting of uniform, evenly spaced disk-shaped segments with a terminal spherical structure. The type species is "Palaeopascichnus" jiumenensis Dong, Xiao, Shen & Zhou (2008).

Parahorodyskia[284]

Gen. et sp. et comb. nov

Liu & Dong in Liu et al.

Ediacaran-Cambrian

Liuchapo Formation

China

An organism consisting of even-sized spherical and ellipsoidal segments with consistent spacing. The type species is P. disjuncta; genus also includes "Horodyskia" minor Dong, Xiao, Shen & Zhou (2008).

Poratusiramus[285]

Gen. et sp. nov

In press

Yi et al.

Ediacaran

Liuchapo Formation

China

An organism preserved as a long horizontal stem with side branches growing upward, with similarities to possible Cambrian dasycladalean algae such as Seletonella. The type species is P. xiangxiensis.

Portfjeldia[287]

Gen. et sp. nov

In press

Willman & Peel

Ediacaran

Portfjeld Formation

Greenland

An organism of uncertain affinities, possibly an alga. Genus includes new species P. aestatis.

Retisphaeridium minimum[288]

Sp. nov

Valid

Palacios in Palacios et al.

Cambrian

Kistedalen Formation

Norway
Poland
Sweden

An acritarch.

Retisphaeridium rugulatum[288]

Sp. nov

Valid

Palacios in Palacios et al.

Cambrian

Kistedalen Formation

Norway

An acritarch.

Sphaerochitina? latviensis[280]

Sp. nov

Valid

Nõlvak, Liang & Hints

Ordovician (Darriwilian)

Baldone Formation

Latvia

A chitinozoan.

Tubula[289]

Gen. et sp. nov

Golubkova et al.

Early Cambrian

Belarus

A microfossil. Genus includes new species T. tortusa.

Research

A specimen of the Volyn Biota
Microorganisms in individual primary fluid inclusions in halite at 1,5 km core depth[291]
  • A study on the morphometric variation, taxonomy, stratigraphic distribution and habitat settings of palaeopascichnids is published by Kolesnikov & Desiatkin (2022).[292]
  • Zhang & Zhang (2022) describe new embryo-like Megasphaera fossils from the Ediacaran Zhenba microfossil assemblage, and interpret the studied specimens as inconsistent with the metazoan interpretation of the Ediacaran Megasphaera fossils, and supporting their encysting-protist affinity.[293]
  • A study aiming to determine whether Dickinsonia grew by tissue patterning like animals or by meristems like plants and pseudomeristems like fungi, based on data from damaged specimens from the Ustʹ Pinega Formation (Russia), is published by Retallack (2022).[294]
  • Slater et al. (2022) present a global record of imprint
    nanoplankton fossils, and interpret their findings as contradicting the view that declines in nanofossil abundance through several past global warming events are evidence of biocalcification crises caused by ocean acidification and related factors.[295]
  • Evidence indicating that benthic foraminifera dispersed in plankton and renewed planktonic foraminifera diversity after the Cretaceous–Paleogene extinction event is presented by Morard et al. (2022).[296]
  • A study on the impact of the Paleocene–Eocene Thermal Maximum on tropical planktic foraminifera in the central Pacific Ocean is published by Hupp, Kelly & Williams (2022).[297]
  • Revision of the taxonomy, regional distribution, ecological preferences and stratigraphic significance of the middle Miocene foraminifera from the northern Namibian continental shelf is published by Bergh & Compton (2022).[298]
  • A study on the taphonomy and morphology of the type material of Charniodiscus concentricus is published by Pérez-Pinedo et al. (2022), who emend the generic diagnosis of Charniodiscus.[299]
  • Scientists report the discovery of 830 million year old microorganisms in fluid inclusions within halite that may, potentially, still be alive. According to the researchers, "This study has implications for the search for life in both terrestrial and extraterrestrial chemical sedimentary rocks."[300][291]

History of life in general

  • Eckford-Soper et al. (2022) argue that the size distribution of preserved
    phagotrophy and mixotrophy.[301]
  • A study on the age of the
    Lantian biota is published by Yang et al. (2022).[302]
  • A study on ecosystem structure changes during the late Ediacaran is published by Eden, Manica & Mitchell (2022).[303]
  • A global database of the Ediacara Biota is compiled by Evans et al. (2022), who report that ~80% of taxa from the White Sea Ediacaran assemblage (ca. 560–550 million years old) are absent from the Nama interval (ca. 550–539 million years ago), representing a drop in diversity comparable to losses during Phanerozoic mass extinctions, and interpret their findings as indicative of existence of a link between this biotic turnover and environmental change.[304]
  • Green, Renne & Keller (2022) argue that the observed degree of temporal correlation between continental large igneous provinces and faunal turnovers in the Phanerozoic is unlikely to occur by chance, and that continental large igneous provinces might be major driver of extinctions throughout the Phanerozoic.[305]
  • A study on animal cognitive complexity in Cambrian and post-Cambrian marine ecosystems is published by Hsieh, Plotnick & Bush (2022).[306]
  • Review of the morphological, paleontological, developmental and molecular data on the early evolution of deuterostomes is published by Nanglu et al. (2022).[307]
  • A study on the fossil record of Cambrian marine invertebrates is published by Na et al. (2022), who outline time-traceable
    biogeographic provinces for this period and confirm an increase in regional differences of faunal composition through time.[308]
  • An association of palaeoscolecids, brachiopods and parasitic tube worms, interpreted as record of a brachiopod-dominated, vertically stratified benthic community where the different phyla filled multiple ecological niches, is reported from the Cambrian Stage 4 Wulongqing Formation (China) by Chen et al. (2022).[309]
  • Sun et al. (2022) report the discovery of the Linyi Lagerstätte, a new Drumian lagerstätte from the Zhangxia Formation (Shandong, China) containing a diverse and well-preserved Burgess Shale-type fossil assemblage.[310]
  • A study on the ecological processes that structured the composition of trilobite and echinoderm communities from the Central Anti-Atlas (Morocco), Montagne Noire (France) and Cordillera Oriental (Argentina) during the Early Ordovician is published by Saleh et al. (2022).[311]
  • A new tropical Lagerstätte containing a variety of soft tissues and rich shelly fossils, and preserving a fauna consisting of Cambrian relics as well as of taxa which originated during the Ordovician (Liexi fauna), is reported from the Lower Ordovician Madaoyu Formation (Hunan, China) by Fang et al. (2022).[312]
  • Saleh et al. (2022) describe a new fossil locality from the Ordovician Fezouata Shale (Morocco) named Taichoute, dominated by three-dimensionally preserved and heavily sclerotized fragments of large euarthropods, and extending the temporal distribution of fossil preservation from this formation into the upper Floian.[313]
  • Evidence of
    tentaculitoid tubeworms and rugosans, as well as evidence of symbiotic associations of tabulate corals with cornulitids, is reported from the Silurian of Baltica (Belarus, Moldova, Russia and Ukraine) by Borisenko et al. (2022).[314]
  • Zapalski et al. (2022) report fossils of the cystoporate bryozoan Fistulipora przhidolensis and unidentified trepostomes intergrown with auloporid tabulate corals and putative hydrozoans from the Silurian (Přídolí) Ohesaare Formation (Estonia), and interpret the studied bryozoans and cnidarians as forming mutually beneficial associations, representing the oldest cases of such associations reported to date.[315]
  • A study on the
    morphotypes compared to vertebrate taxa known from skeletal material, and interpret this finding as indicative of unexpectedly high vertebrate diversity in the immediate aftermath of the late Devonian extinction.[316]
  • A study on patterns of latitudinal diversity gradients of marine invertebrate fossils during climatic changes from the Carboniferous icehouse to the Triassic greenhouse climates is published by Zhang, Shen & Erwin (2022), who interpret their findings as indicating that peaks of the latitudinal diversity gradients may be shaped by multiple factors rather than alternating icehouse and greenhouse climates.[317]
  • A study on the modifications to cranial anatomy in the early evolution of tetrapods is published by Rawson et al. (2022), who interpret their findings as indicating that reduction in the number of skull bones across the origin of tetrapods was associated with increased density (remaining bones acquired more connections), but also with skulls with fewer bones becoming more integrated and less modular across the fish-tetrapod transition, while no such change to skull construction was found between the first stem tetrapods and crown tetrapods from later in the Paleozoic.[318]
  • A study on rates of evolution and evolutionary constraints during the earliest (Carboniferous–early Permian) radiation of amniotes across their anatomy, examining differences between early synapsids and early reptiles, is published by Brocklehurst, Ford & Benson (2022).[319]
  • Review of the stratigraphic and paleontological data on the Permian equatorial ecosystem from Mallorca (Spain) is published by Matamales-Andreu et al. (2022).[320]
  • New fossil material from the Le Bousquet site in the Permian (Cisuralian) Red Sandstone Group of the Rodez Basin (France), including traces of protostomes, trails of fishes and tetrapod tracks, as well as remains of jellyfishes and plants, is described by Moreau & Gand (2022).[321]
  • Prevec et al. (2022) report a new Permian (probably early Wordian) fossil locality from the Karoo Basin in the Northern Cape Province, South Africa (the Onder Karoo locality), featuring a large abundance of exceptionally preserved fossils of freshwater and terrestrial insects, arachnids and plants.[322]
  • A study on changes in species composition of the brachiopod fossil record from the Permian Kapp Starostin Formation (Spitsbergen, Norway), and on their implications for the knowledge of the global significance of the Capitanian mass extinction event, is published by Lee et al. (2022).[323]
  • A study on changes in the composition of the Sundyr tetrapod assemblage (Russia) during the Middle-Late Permian transition is published by Shishkin (2022).[324]
  • Revision of tetrapod tracks from the Capitanian Pélitique Formation (France) is published by Marchetti et al. (2022).[325]
  • Review of the patterns of the Permian–Triassic extinction event in the ocean and on land, discussing the hypotheses surrounding the kill mechanisms of this extinction, is published by Dal Corso et al. (2022).[326]
  • A study on the ecological selectivity of marine extinctions across the end-Permian mass extinction in the South China region is published by Foster et al. (2022).[327]
  • A study on trace fossils from 400 horizons in 26 sections in South China and adjacent regions, spanning the uppermost Permian to topmost Lower Triassic strata, is published by Feng et al. (2022), who interpret their findings as indicating that a well-established
    epifauna-dominated ecosystem in the Middle Triassic.[328]
  • A study on an outcrop containing hundreds of Induan tetrapod fossils in the southern Karoo Basin of South Africa, including clusters of up to eight closely spaced Lystrosaurus skeletons (two of which display an envelope which is likely a permineralised mummified skin), is published by Smith, Botha & Viglietti (2022), who interpret this finding as evidence for episodes of drought-induced mass death, indicative of intensification of continental aridity ~252 million years ago by greenhouse gasses from the Siberian traps.[329]
  • A study on the ecological state of the Early Triassic benthic fauna from the Hiraiso Formation (Japan), comparing it with coeval assemblages from around the world, is published by Foster et al. (2022), who interpret their findings as indicating that the studied fauna represents an advanced stage of ecological recovery for the Early Triassic, but not full recovery, and interpret the distribution of the Early Triassic benthic faunas as consistent with the existence of oxygenated habitats associated with shallow marine shelves, serving as refuges for benthic marine ecosystems during the anoxic events, but also argue that the existence of such shallow marine habitable zones was not restricted solely to the anoxic events, and that recovery in shallow marine environments after the end-Permian mass extinction was delayed by some factor other than oxygen stress.[330]
  • Revision of the vertebrate fossil material from the Lower Triassic of the Big Bogdo Mountain (Astrakhan Oblast, Russia) is published by Novikov, Sennikov & Uliakhin (2022), who describe fossil material of land reptiles from the nearshore marine Bogdо Formation which might represent the first record of erythrosuchids from this locality.[331]
  • Diverse assemblage of tetrapods, including a lonchorhynchine
    dicynodont, procolophonid parareptiles and several taxa of archosauromorph reptiles (including the first definite record of Tanystropheus from eastern North America), is described from the Middle Triassic Economy Member of the Wolfville Formation (Nova Scotia, Canada) by Sues et al. (2022).[332]
  • Otero et al. (2022) describe new vertebrate remains from the Triassic "Estratos El Bordo" unit in the Atacama Desert (Chile), including freshwater ray-finned fishes and the first known temnospondyl material from the El Bordo Basin.[333]
  • Shi, Chen & Liu (2022) report a new tetrapod locality from the Upper Triassic Tanzhuang Formation (Jiyuan, China), preserving fossil material of a
    capitosauroid belonging or closely related to the genus Mastodonsaurus (expanding the distribution of its lineage to the Late Triassic of East Asia) and a pelvis of a tetrapod of uncertain affinities.[334]
  • Feng et al. (2022) present evidence of a trophic cascade from the Upper Triassic Xujiahe Formation (Sichuan, China), describing insect eggs placed between the upper and lower cuticles of the ginkgophyte Baiera multipartita, and interpreting punctures on the eggshell surfaces as indicating that the studied eggs were damaged by a predatory insect.[335]
  • A study on the thermal ecology of 13 terrestrial Late Triassic amniotes (synapsids and archosauromorph reptiles) is published by Hartman et al. (2022), who report that thermal tolerances are sufficient to constrain the latitudinal distribution of the studied taxa, with small mammaliamorphs being able to persist at high latitudes with nocturnal activity and daytime burrowing.[336]
  • A study on the impact Early Jurassic Jenkyns Event, affecting terrestrial environments with global warming, perturbation of the carbon cycle, enhanced weathering and wildfires, on terrestrial ecosystems, including plant and dinosaur assemblages, is published by Reolid, Ruebsam & Benton (2022).[337]
  • Allain et al. (2022) describe the Berriasian continental vertebrate fauna from the Angeac-Charente bonebed (France).[338]
  • A study on the diversity of the vertebrates in the Yanliao Biota, comparing this biota with other biotas of similar age, is published by Liu, Wu & Han (2022).[339]
  • Revision of the Early Cretaceous vertebrate fauna from the Khok Pha Suam locality (Khok Kruat Formation, Thailand) is published by Manitkoon et al. (2022).[340]
  • Pochat-Cottilloux, Allain & Lasseron (2022) describe the microvertebrate remains from the Lower Cretaceous Gadoufaoua deposits in the Iullemmeden Basin (Niger), including the first fossil material of
    boreosphenidan mammal from Gadoufaoua.[341]
  • Revision of the Cenomanian continental vertebrate fauna from the Gara Samani area (Algeria) is published by Benyoucef et al. (2022).[342]
  • New fossil material of marine vertebrates (
    ptychodontid sharks, enchodontid teleosts and mosasaurs) is described from the Upper Cretaceous (Coniacian-Santonian) Karababa Formation (Turkey) by Bardet et al. (2022), extending known geographic range of the genera Platecarpus and Enchodus, and possibly of the species Ptychodus mortoni.[343]
  • A diverse biotic community comprising bacteria, fungi, nematodes, several types of arthropods, and marine bivalves is reported from the fossil wood assemblage from the Santonian Mzamba Formation (South Africa) by Philippe et al. (2022).[344]
  • A diverse vertebrate fauna, sharing similarities with lowland to marginal marine ecosystems in the Oldman and Dinosaur Park formations (which were deposited in southern Alberta prior to the gap in the terrestrial fossil record caused by a transgression of the inland Bearpaw Seaway during the latter part of the Campanian), is described from the Unit 3 of the strictly terrestrial Wapiti Formation (Alberta, Canada) by Fanti et al. (2022).[345]
  • Description of the Late Cretaceous (Campanian–Maastrichtian) vertebrate fauna from the J&M site (Williams Fork Formation; Colorado, United States) is published by Brand et al. (2022).[346]
  • A study on the Late Cretaceous trace fossil assemblage from the Chicxulub area (Gulf of Mexico), revealing the presence of a diverse macrobenthic tracemaker community in the Yucatán area prior to the Chicxulub impact event, is published by Rodríguez-Tovar et al. (2022).[347]
  • A study on the magnitude of ecological change from the Campanian to the Danian, as indicated by fossil record of North American vertebrates, is published by García-Girón et al. (2022), who interpret their findings as indicative of trophic restructuring in the latest Cretaceous dinosaur faunas, with decline of megaherbivores being counterbalanced by stronger influence of medium-sized species on Maastrichtian food webs, but otherwise indicating that dinosaur niches were stable and static, which might have placed dinosaurs at a disadvantage in the event of an abrupt shutdown of the trophic network, while smaller vertebrates, including mammals, consistently increased their impact on food webs, beginning in the latest Cretaceous and continuing in the Paleocene.[348]
  • Khand et al. (2022) report the discovery of new fossiliferous localities from the Paleogene Naran Bulak Formation (Mongolia), preserving ostracod fossils and a mammal fauna that does not fit easily with established biostratigraphic patterns, with fossils of Archaeolambda and Palaeostylops (suggesting a Paleocene age) co-occurring with fossils of Gomphos elkema (suggesting an Eocene age).[349]
  • Revision of the vertebrate fossil material from the Miocene deposits of the Zaysan Basin in Central Asia is published by Kovalchuk et al. (2022), who argue that the studied fossil indicate an Early Miocene age of the Zaysan Formation, and report amiid remains representing the most recent record of the family (and of Halecomorphi in general) outside North America reported to date.[350]
  • McCurry et al. (2022) report the discovery of a new Miocene Lagerstätte named McGraths Flat (New South Wales, Australia), preserving a rich diversity of microfossils, plants, insects, spiders, and vertebrate remains, and preserving evidence of several species interactions, including predation, parasitism and pollination.[351]
  • Revision of the late Miocene vertebrate fauna of Builstyn Khudag (Mongolia) is published by Daxner-Höck et al. (2022).[352]
  • A study on the relationship between landscape and climatic changes and the evolution of the late Miocene faunas of terrestrial vertebrates and marine mammals of southeastern Europe is published by Zelenkov et al. (2022).[353]
  • Kostopoulos et al. (2022) report a new Lower Pleistocene (probably late Villafranchian) vertebrate site, Krimni-3, from Mygdonia Basin (Greece), preserving fossil material of several taxa of mammals, as well as a femur of Pachystruthio dmanisensis, representing the southernmost known occurrence of this species, as well as the first record of a giant ostrich in Greece and southeastern Europe in general.[354]
  • Kjær et al. (2022) report the discovery of ancient environmental DNA from Kap København Formation in North Greenland, interpreted as indicative of the presence of an open boreal forest with diverse plant and animal species (including mastodons, reindeer, hares, rodents, geese, horseshoe crabs and green algae) approximately two million years ago, representing an ecosystem that has no present-day analogue.[355]
  • Fernández-Monescillo et al. (2022) document fossil material of the notoungulate species Mesotherium cristatum from the middle Pleistocene deposits in the west Pampean Region of the Córdoba Province (Argentina), representing a new Last Appearance Datum for this species, and interpret this finding as indicating M. cristatum should no longer be considered as the guide taxon of the Ensenadan, and that the temporal boundaries of the biostratigraphic units established for the Pampean Region can only be supported by fossil evidence and not by the temporal boundaries of the chronostratigraphic units as has been used so far.[356]
  • A study on the stratigraphy and age for the Trinil site (Java, Indonesia) and its fossils is published by Hilgen et al. (2022), who interpret their findings as challenging the assumption that the Trinil H. K. Fauna – which includes Homo erectus – is a homogeneous biostratigraphic unit.[357]
  • Evidence from the sedimentary ancient DNA from the Batagay megaslump (Sakha, Russia) indicative of ecosystem-wide changes between Pleistocene glacial and interglacial intervals in East Siberia is presented by Courtin et al. (2022).[358]
  • A study on the impact of the extinct Neotropical megafauna on the variability in plant functional traits and biome geography in Central and South America is published by Dantas & Pausas (2022).[359]
  • A study on the relative abundances of fossil squamates and anurans from McEachern's Deathtrap Cave (Australia), aiming to determine whether compositional changes of this fauna during the last ~14,000 years were related to late Pleistocene–Holocene climatic fluctuations, is published by Ramm et al. (2022).[360]
  • A study aiming to reconstruct Holocene feeding guilds in extinct megaherbivores of Madagascar on the basis of carbon and nitrogen isotope data is published by Hansford & Turvey (2022).[361]
  • A study on the daily dentine apposition rates in extant and fossil amniotes, aiming to test the hypothesized daily limits of odontoblast activity, examine phylogenetic and allometric patterns of dentine growth evolution and reconstruct ancestral states of daily dentine apposition for major amniote clades, is published by Finch & D'Emic (2022).[362]
  • A study on the evolutionary history of the major patterns of primary ossification of the vertebral column in living and fossil amniotes, incorporating data from exceptionally well-preserved fossils of Mesosaurus tenuidens, is published by Verrière, Fröbisch & Fröbisch (2022), who interpret their findings as indicative of stability of vertebral development patterns in amniotes since their common ancestor.[363]

Other research

  • A study aiming to infer atmospheric oxygen concentrations over the past 1.5 billion years is published by Krause et al. (2022), who interpret their findings as indicating that there was no simple unidirectional rise in atmospheric oxygen levels during the Neoproterozoic and the first animals evolved against a backdrop of extreme O2 variability, with atmospheric O2 levels oscillating between ~1 and ~50% of the present atmospheric level during the Neoproterozoic.[364]
  • A study on the diagnostic characteristics of the Chengjiang Biota deposit and on its sedimentary environment is published by Saleh et al. (2022).[365]
  • Zhao et al. (2022) use a continuous astronomical signal detected as geochemical variations in the late Cambrian Alum Shale Formation (Sweden) to establish a 16-million-years-long astronomical time scale, providing detailed temporal constraints on the paleoenvironmental and biological changes during the late Cambrian.[366]
  • Evidence of rapid marine oxygen fluctuations in the Late Ordovician oceans, with strong temporal link to mass extinction pulses at the end of the Ordovician, is presented by Kozik et al. (2022).[367]
  • Jing et al. (2022) present evidence of the occurrence of a true polar wander event 450–440 million years ago, and interpret this event as explaining the timing and migration of glacial centers across Gondwana, as well as the protracted end-Ordovician mass extinction.[368]
  • Evidence indicating that the evolution of vascular plants and the expansion of terrestrial vegetation initiated at the end of the Llandovery Epoch enhanced the complexity of weathering and sedimentary systems and altered the composition of continental crust is presented by Spencer et al. (2022).[369]
  • A study on the lithology and stratigraphy of the Famennian-aged Lebedjan Formation (Lipetsk Oblast, Russia), on the composition of the Lebedjan biota and on its paleoenvironment, is published by Bicknell & Naugolnykh (2022).[370]
  • A study on the development of the mid-late Cisuralian environments and ecosystems in central Pangaea, based on data from the late Cisuralian fossil assemblage of the Southern Alps and its comparison with other Cisuralian assemblages, is published by Marchetti et al. (2022).[371]
  • A study on the age of the vertebrate-bearing Permian deposits of the Chickasha Formation (Oklahoma, United States) and San Angelo Formation (Texas, United States) is published by Laurin & Hook (2022).[372]
  • The first shallow-marine
    methane seeps reported from the Australian Upper Paleozoic, as well as a new seep biota, are described from the Sakmarian lower Holmwood Shale in the Irwin Basin by Haig et al. (2022).[373]
  • Revision of the biostratigraphy of the Permian to Triassic Beaufort Group (Karoo Supergroup; South Africa) is published by Viglietti et al. (2022).[374]
  • A study on the timeline and character of environmental changes in the Bowen Basin (Queensland, Australia) leading up to the Permian–Triassic extinction event is published by Fielding et al. (2022).[375]
  • A study investigating fossilised shells of gastropods and bivalves from the Permian–Triassic succession exposed at Lusitaniadalen (Svalbard, Norway) for dissolution and repair marks, and aiming to determine whether a worldwide ocean acidification event occurred during the Permian–Triassic transition, is published by Foster et al. (2022).[376]
  • A study on changes of lithium and strontium isotope composition of seawater in the Permian to Early Triassic is published by Cao et al. (2022), who report evidence of a sharp decrease of the lithium isotope composition of seawater in the Late Permian and of persistence of low seawater lithium isotope values throughout the Early Triassic, interpreted by the authors as likely caused by increased reverse weathering rates, potentially explaining the failure of chemical weathering to draw down atmospheric CO2 levels during the Early Triassic.[377]
  • A continuous record of atmospheric CO2 during the Permian-Triassic transition from the Shangsi section (China) is presente by Shen et al. (2022), who also study changes of marine phytoplankton community structure across this interval, and interpret their findings as indicating that while the first extinction pulse of the Permian–Triassic extinction event in the latest Permian appears to have been associated with intense initial weathering that briefly suppressed the atmospheric CO2, it was followed by a rapid rise to a prolonged high atmospheric CO2, and the second extinction pulse in the Early Triassic was sustained by food web collapse driven by the expansion of bacterial production in response to oligotrophic conditions.[378]
  • Evidence from the Bristol Channel Basin (United Kingdom), indicating that intensive euxinia and acidification driven by Central Atlantic magmatic province activity formed a two-pronged kill mechanism at the end-Triassic mass extinction, is presented by Fox et al. (2022).[379]
  • Onoue et al. (2022) present a continental weathering record in the northwestern Tethys during the end-Triassic mass extinction event, inferred from strontium, carbon and oxygen isotope data from carbonate–clastic deposits in the Kardolína section (Slovakia), and interpret their findings as indicating that the marine environment in the Late Triassic European basins may have developed an oxygen minimum zone due to the increase in continental weathering during the latest Rhaetian, which might have had an important role in the marine end-Triassic extinction.[380]
  • Review of the late Early Jurassic Karoo biota from southern Africa and its geological framework is published by Bordy et al. (2022).[381]
  • A study on the age of the Early Cretaceous fossil assemblage from the Moqi fossil bed (China) is published by Yu et al. (2022).[382]
  • Rodríguez-López et al. (2022) report evidence from the Lower Cretaceous Luohe Formation (Ordos Basin, China) interpreted as indicative of the occurrence of permafrost in a plateau desert during the Cretaceous supergreenhouse, analogous to modern permafrost in the Western Himalayas.[383]
  • Beveridge et al. (2022) present new radioisotopic ages for the Campanian Wahweap Formation (Utah, United States), a lithostratigraphic revision and a review of the spatio-temporal distribution of vertebrate fossils from this formation, including revised ages for early tyrannosaurid, hadrosaurid and centrosaurine dinosaurs.[384]
  • A set of geochronologic data from the Campanian geological formations of North America's Western Interior Basin is presented by Ramezani et al. (2022), who consider their findings to be indicative of significant age overlap between the main fossil-bearing intervals of the Kaiparowits, Judith River, Two Medicine and Dinosaur Park formations, and interpret their findings as refuting inferences that the proposed latitudinal provinciality of the Campanian dinosaur taxa is only an artefact of age misinterpretation.[385]
  • A study on the age of the Cape Lamb Member of the Snow Hill Island Formation and of the overlying Sandwich Bluff Member of the Lopez de Bertodano Formation (Vega Island, Antarctica) is published by Roberts et al. (2022), who interpret their findings as indicating that Mesozoic marine vertebrates and non-avian dinosaurs persisted in Antarctica up to the terminal Cretaceous.[386]
  • Nicholson et al. (2022) present evidence of a previously unidentified probable impact crater on the southwest Guinea Terrace (offshore West Africa, exclusive economic zone of Guinea), interpreted as formed at or near the Cretaceous-Paleogene boundary and approximately the same age as the Chicxulub impact crater, and possibly formed by an impactor which broke off from the larger Chicxulub asteroid or was a part of a longer-lived impact cluster.[387]
  • A study on the bone apposition in three paddlefish dentaries and three sturgeon pectoral fin spines from the Tanis site (North Dakota, United States), aiming to pinpoint the season in which bone apposition terminated, is published by During et al. (2022), who interpret their findings as indicating that the impact that caused the Cretaceous–Paleogene extinction event took place during boreal spring.[388]
  • Review of the environmental consequences of the Chicxulub impact at the Cretaceous–Paleogene boundary is published by Morgan et al. (2022).[389]
  • Auderset et al. (2022) present evidence from foraminifera-bound nitrogen isotopes interpreted as indicating that during the Early Eocene Climatic Optimum and Middle Miocene Climatic Optimum the ocean's oxygen-deficient zones contracted rather than expanded.[390]
  • Brachert et al. (2022) present oxygen and carbon isotope time series from reef corals from the Middle Eocene Climatic Optimum (~40 million years ago) from the sands of Auvers (France), who interpret their findings as providing evidence of
    zooxanthellate symbiosis in tropical reef corals of the Paleogene, as well as providing evidence of subdued sea surface temperature seasonality of 7° to 8 °C during the Middle Eocene Climatic Optimum.[391]
  • Evidence of preservation of porphyrins in a gar belonging to the genus Atractosteus from the Messel pit (Germany), possibly representing diagenetically altered heme originating from the fossil, is presented by Siljeström, Neubeck & Steele (2022).[392]
  • A study on the early Oligocene-middle Miocene wildfire history of the northern Tibetan Plateau and on the relationship between wildfire frequencies and temperature changes, based on data from sedimentary records of the microcharcoals from the Qaidam Basin, is published by Miao et al. (2022).[393]
  • New information of the age, stratigraphy, biota and palaeoenvironment of the Miocene Els Casots site (Vallès-Penedès Basin; Catalonia, Spain) is presented by Casanovas-Vilar et al. (2022).[394]
  • A study aiming to reconstruct the middle Miocene habitats on the northern North American Great Plains, as indicated by stable carbon isotope data from a wide variety of fossil ungulates from four local faunas in Nebraska of late Barstovian age, is published by Nguy & Secord (2022).[395]
  • Miao et al. (2022) present evidence from pollen records from the northern Tibet plateau, interpreted as indicating that the plateau obtained its current elevation approximately 10 million years ago.[396]
  • A study on the environmental variability in Africa during the Pliocene and Pleistocene, and on the impact of this environmental variability on the evolution of African mammals, is published by Cohen et al. (2022).[397]
  • A study on the habitat types at the Woranso-Mille site (Ethiopia) during the Pliocene, and on factors which allowed the coexistence of more than one species of Australopithecus at the site, is published by Denise Su & Yohannes Haile-Selassie (2022).[398]
  • A study on the environmental context of hominin evolution in the Plio-Pleistocene of Africa, as indicated by oxygen and carbon enamel isotope data from carnivorans from the Omo Group of the Turkana Basin (Kenya), is published by Hopley et al. (2022).[399]
  • Zachariasse & Lourens (2022) interpret the sediments from Crete (Greece) preserving the Trachilos footprints as late Pliocene in age, thus dating to the time when Crete was separated from mainland Greece and Turkey by stretches of deep water which were at least 100 km wide, and interpret this finding as indicating that the putative footprints were highly unlikely to be produced by hominins, and casting doubts on whether they were footprints at all.[400]
  • A study on the age of the Xiashagou Fauna from the
    Nihewan Basin in northern China is published by Tu et al. (2022), who interpret the age of this fauna as consistent with the ages of the Senèze and Olivola Faunas in Europe, and possibly indicative of the existence of an ecological corridor for faunal dispersals across northern Eurasia during the early Pleistocene.[401]
  • Evidence of the association of burnt tusk and burnt lithics within a clearly defined archaeological horizon at the Lower Paleolithic site of Evron Quarry (Israel), dated between 1.0 and 0.8 Mya and lacking visual signatures for fire, is presented by Stepka et al. (2022).[402]
  • A study on the relative importance of six drivers of vegetation change (moisture availability, fire activity, mammalian herbivore density, temperature, temperature seasonality, CO2) in western Africa over the past ~500,000 years, comparing past environmental change data from Lake Bosumtwi (Ghana) with global data, is published by Gosling et al. (2022), who interpret their findings as indicating that shifts in atmospheric CO2 concentrations did not drive changes in woody cover in the tropics at the millennial scale.[403]
  • A study aiming to reconstruct the history of sea level at the Bering Strait since 46,000 years ago is published by Farmer et al. (2022), who find that the Bering Strait was open from at least 46,000 until 35,700 years ago, dating the last formation of the land bridge to within 10,000 years of the Last Glacial Maximum.[404]
  • mitochondrial genomes are reconstructed from samples of permafrost silts from central Yukon (Canada) spanning the last 30,000 years by Murchie et al. (2022).[405]
  • A study on the timing of the opening of the
    ice-free corridor along the eastern front of the Rocky Mountains in the late Pleistocene, aiming to determine whether this corridor was available for the first peopling of the Americas after the Last Glacial Maximum, is published by Clark et al. (2022).[406]
  • Wiemann & Briggs (2022) demonstrated the presence of different biological signals in Raman and Fourier-transform infrared spectroscopy data of a diversity of carbonaceous animal fossils through independent laboratory confirmation (2022).[407]
  • A study on the impact of food hardness and size on the morphology of the mandible of extant pigs, and on its implications for the use of mandibular morphology as a proxy in paleodietary reconstructions, is published by Neaux et al. (2022).[408]
  • Amano et al. (2022) present a method to mathematically isolate and selectively eliminate the taphonomic deformation of a fossil skull for restoration of its original appearance, and apply this method to reconstruction of a skull of Mesopithecus from the late Miocene of Greece.[409]
  • Demuth et al. (2022) present a new method for volumetric three-dimensional reconstructions of musculature in extant and extinct taxa, and apply this method to reconstruction of the hindlimb musculature of Euparkeria capensis.[410]
  • Lallensack & Falkingham (2022) present a new method that allows for estimating limb phase based on variation patterns in long trackways, and use this method to estimate limb phases of giant wide-gauged sauropod dinosaurs that produced three long trackways from the Albian De Queen Formation (Arkansas, United States).[411]
  • Gates et al. (2022) present new method that allows for differentiation of various geographic distributional hypotheses using information from the fossil record about entire communities, apply this method to datasets of pollen and ceratopsid dinosaurs from the Late Cretaceous Western Interior Basin of North America, and interpret their findings as indicative of the presence of two plant communities with a transition zone of unknown width between them, while finding no evidence of a biogeographical pattern in the distribution of ceratopsids.[412]
  • Survey of examples of scientific practices stemming from colonialism, focusing on the studies of fossils from Brazil (Araripe Basin) and Mexico (Sabinas, La Popa and Parras basins) published during 1990–2021, is published by Cisneros et al. (2022), who propose recommendations to scientists, journals, museums, research institutions and government and funding agencies to overcome these practices.[413]
  • A study on the history and legality of Myanmar amber use in the literature, providing evidence of links between research interest in Myanmar amber and major political, legal and economic changes, and indicating that the vast majority of publications on this amber do not include researchers from Myanmar as co-authors, is published by Dunne et al. (2022).[414]
  • Stewens, Raja & Dunne (2022) review the history of fossil removal under colonial rule, and evaluate potential avenues for their return under public international law.[415]

Paleoclimate

  • Evidence indicating that the global warming which led to the end-Permian mass extinction was initiated by emissions of large quantities of high temperature methane generated from oils from a large igneous province is presented by Chen et al. (2022).[416]
  • Evidence oxygen isotope ratios from Changhsingian ostracods of north-western Iran, interpreted as indicative of gradual rise of ambient seawater temperature beginning at least 300,000 years prior to the main extinction event of the end-Permian mass extinction, is presented by Gliwa et al. (2022).[417]
  • Joachimski et al. (2022) reconstruct late Permian to Middle Triassic atmospheric CO2 record, and interpret their findings as indicative of an approximate fold increase in pCO2 from the latest Permian to Early Triassic.[418]
  • A study on the climate response to orbital variations in a Late Triassic midlatitude temperate setting in Jameson Land (Greenland) and the tropical low paleolatitude setting of the Newark Basin is published by Mau, Kent & Clemmensen (2022).[419]
  • Olsen et al. (2022) present evidence from the Late Triassic and Early Jurassic strata of the Junggar Basin (northwest China) indicating that, despite extraordinary high partial pressure of CO2, freezing winter temperatures characterized high Pangaean latitudes during the early Mesozoic.[420]
  • Jones, Petersen & Curley (2022) report carbonate clumped isotope paleotemperatures of the mid-Cretaceous thermal maximum measured from Cenomanian oyster fossils of the Western Interior Seaway, and interpret their findings as indicative of extreme mid-latitude warmth in North America.[421]
  • A study on the latitudinal temperature gradient over the last 95 million years, as indicated by data from planktonic foraminifera δ18O, is published by Gaskell et al. (2022).[422]
  • A study on the sulfur isotope anomalies in the Cretaceous-Paleogene boundary impact debris and overlying sediments is published by Junium et al. (2022), who interpret their findings as evidence of injection of massive amounts of sulfur into the stratosphere in the aftermath of the Chicxulub impact, and evidence of the role of the sulfur-bearing gases in driving a postimpact winter.[423]
  • A study on changes of deep ocean temperature across the past 65 million years, inferred from clumped isotope thermometry, is published by Meckler et al. (2022), whose temperature estimates from the deep Atlantic Ocean are overall much warmer compared with oxygen isotope–based reconstructions.[424]
  • A study on climate changes in central China from the late Palaeocene to early Eocene, inferred from palynological assemblages in the Tantou Basin (Henan, China), is published by Su et al. (2022), who interpret their findings as indicative of a sudden climate change in the early Eocene which might signal the emergence of the East Asian Monsoon.[425]
  • Agterhuis et al. (2022) report deep-sea temperature estimates across the Eocene Thermal Maximum 2 and the hyperthermal event that occurred approximately 2 million years after the Paleocene–Eocene Thermal Maximum (approximately 54 million years ago).[426]
  • A study on the climatic impact of oceanic gateway changes at the Eocene–Oligocene Transition is published by Straume et al. (2022).[427]
  • A study on the ocean crustal production (a proxy for tectonic degassing of carbon) since the Miocene is published by Herbert et al. (2022), who argue that changes in tectonic degassing of carbon can account for the majority of long-term ice sheet and global temperature evolution throughout the past 20 million years.[428]
  • A study on the impact of climate variability on the evolution of early African Homo, Eurasian Homo erectus, Homo heidelbergensis, Neanderthals and modern humans is published by Timmermann et al. (2022).[429]
  • Foerster et al. (2022) present a 620,000-year environmental record from Chew Bahir (Ethiopia), providing evidence of three distinct phases of climate variability in eastern Africa which coincided with shifts in hominin evolution and dispersal.[430]
  • Evidence of five phases of lake development at Tayma (Saudi Arabia) is presented by Neugebauer et al. (2022), who interpret their findings as indicative of unexpectedly short duration (dating from 8800 to 7900 years before present) of the Holocene Humid Period in Northern Arabia.[431]

References

  1. OCLC 46769716
    .
  2. .
  3. ^ .
  4. .
  5. .
  6. .
  7. .
  8. .
  9. ^ .
  10. .
  11. .
  12. .
  13. .
  14. .
  15. .
  16. ^ .
  17. .
  18. .
  19. .
  20. .
  21. ^ .
  22. ^ .
  23. .
  24. .
  25. .
  26. ^ .
  27. .
  28. .
  29. .
  30. ^ .
  31. .
  32. ^ Niko, S.; Suzuki, S. (2022). "Caryophylloid scleractinian corals from the Miocene Katsuta Group in the Tsuyama area, Okayama Prefecture, Southwest Japan". Bulletin of the Akiyoshi-dai Museum of Natural History. 57: 1–6.
  33. S2CID 247416059
    .
  34. .
  35. .
  36. .
  37. .
  38. .
  39. .
  40. ^ .
  41. ^ .
  42. .
  43. ^ .
  44. ^ .
  45. ^ .
  46. ^ .
  47. ^ .
  48. .
  49. ^ .
  50. .
  51. ^ .
  52. ^ .
  53. .
  54. ^ .
  55. .
  56. ^ .
  57. .
  58. .
  59. .
  60. .
  61. .
  62. ^ .
  63. ^ .
  64. ^ .
  65. ^ .
  66. ^ Baranov, V. V.; Blodgett, R. B. (2022). "Andronovia-new genus of pentameride brachiopod from the Early Devonian (Emsian) of Northeast Asia". New Mexico Museum of Natural History and Science Bulletin. 90: 47–50.
  67. ^ a b Tazawa, J.; Shintani, T. (2022). "Early Permian (Cisuralian) brachiopods from Nagaiwa‒Sakamotozawa, South Kitakami Belt, Japan" (PDF). Memoir of the Fukui Prefectural Dinosaur Museum. 21: 1–58.
  68. ^
    S2CID 253468541
    .
  69. .
  70. ^ .
  71. .
  72. ^ a b Feldman, H. R.; Blodgett, R. B.; Wilson, M. A. (2022). "Rhynchonellid brachiopods from the Jurassic (Callovian) of southern Israel". New Mexico Museum of Natural History and Science Bulletin. 90: 167–175.
  73. S2CID 249296989
    .
  74. ^ .
  75. ^ .
  76. .
  77. ^ a b Blodgett, R. B.; Baranov, V. V.; Santucci, V. L. (2022). "Two new late Emsian (latest Early Devonian) pentameridine brachiopods from the Shellabarger Limestone (new formation), Shellabarger Pass, Denali National Park & Preserve, south-central Alaska". New Mexico Museum of Natural History and Science Bulletin. 90: 73–83.
  78. ^
    S2CID 253002692
    .
  79. ^ a b c d e f g h i j k l m Wenndorf, K.-W. (2022). "Nucinulidae (Brachiopoda, Rhynchonellida) aus dem Unter- und Mitteldevon des Rheinischen Schiefergebirges und benachbarter Regionen". Mainzer Naturwissenschaftliches Archiv. Beiheft 36: 1–189.
  80. S2CID 247424318
    .
  81. .
  82. ^ .
  83. .
  84. .
  85. ^ .
  86. ^ .
  87. ^ .
  88. ^ .
  89. .
  90. .
  91. .
  92. .
  93. .
  94. .
  95. .
  96. ^ Forner, E.; Saura, M.; Bayot, J.; Gombau, E. (2022). "Acriaster aresensis sp. nov. (Echinoidea: Cassiduloida) del Barremià d'Ares del Maestrat". Nemus: Revista de l'Ateneu de Natura. 12: 208–220.
  97. S2CID 253504208
    .
  98. .
  99. .
  100. ^
    S2CID 246330814. {{cite book}}: |journal= ignored (help
    )
  101. .
  102. .
  103. .
  104. ^ Forner, E. (2022). "Catopygus vilari sp. nov. (Echinoidea) de l'Aptià inferior de la conca del Maestrat". Nemus: Revista de l'Ateneu de Natura. 12: 194–207.
  105. S2CID 252239277
    .
  106. .
  107. ^ .
  108. S2CID 246026621. {{cite book}}: |journal= ignored (help
    )
  109. .
  110. ^ .
  111. .
  112. ^ .
  113. .
  114. .
  115. .
  116. ^ .
  117. .
  118. .
  119. .
  120. ^ .
  121. .
  122. ^ .
  123. .
  124. ^ .
  125. .
  126. ^ Zamora, Samuel, Yorkicystis, the 500 million-year-old relative of starfish that lost its skeleton, The Conversation, May 24, 2022 with images including a projection for the type species, Yorkicystis haefneri, named after its finder, Chris Haefner of York, Pennsylvania, USA, for genus that existed during the "Cambrian Explosion" that flourished 539 million to 485 million years ago – with additional references that could enable creation of a separate article on the genus – note: this source article has a Creative Commons license and may be republished freely
  127. S2CID 253664587
    .
  128. .
  129. .
  130. .
  131. .
  132. .
  133. .
  134. .
  135. .
  136. .
  137. .
  138. ^ .
  139. .
  140. ^ .
  141. S2CID 253194718. {{cite book}}: |journal= ignored (help
    )
  142. .
  143. .
  144. .
  145. ^ .
  146. .
  147. .
  148. .
  149. .
  150. .
  151. .
  152. .
  153. .
  154. .
  155. .
  156. .
  157. .
  158. .
  159. .
  160. .
  161. .
  162. .
  163. .
  164. .
  165. .
  166. .
  167. .
  168. .
  169. .
  170. .
  171. .
  172. .
  173. .
  174. .
  175. .
  176. .
  177. .
  178. .
  179. .
  180. .
  181. .
  182. .
  183. .
  184. .
  185. .
  186. .
  187. .
  188. .
  189. .
  190. .
  191. .
  192. .
  193. .
  194. .
  195. ^ .
  196. .
  197. .
  198. .
  199. .
  200. .
  201. .
  202. .
  203. .
  204. .
  205. .
  206. .
  207. .
  208. .
  209. .
  210. .
  211. .
  212. .
  213. .
  214. .
  215. .
  216. .
  217. .
  218. .
  219. .
  220. .
  221. .
  222. .
  223. .
  224. ^ .
  225. .
  226. .
  227. ^ .
  228. .
  229. ^ .
  230. ^ .
  231. .
  232. .
  233. ^ .
  234. ^ .
  235. ^ .
  236. ^ .
  237. .
  238. .
  239. .
  240. .
  241. .
  242. .
  243. ^ .
  244. .
  245. .
  246. .
  247. ^ Kadolsky, D. (2022). "Enigmatic microfossils from Belgian Oligocene sediments are serpuloidean, not gastropod opercula". Cainozoic Research. 22 (1): 37–43.
  248. S2CID 249140297
    .
  249. .
  250. .
  251. .
  252. .
  253. .
  254. .
  255. .
  256. .
  257. .
  258. .
  259. .
  260. .
  261. .
  262. .
  263. .
  264. .
  265. .
  266. .
  267. .
  268. .
  269. .
  270. .
  271. .
  272. .
  273. .
  274. .
  275. .
  276. .
  277. .
  278. .
  279. .
  280. ^ .
  281. .
  282. .
  283. doi:10.1144/jgs2022-08 (inactive 31 January 2024).{{cite journal}}: CS1 maint: DOI inactive as of January 2024 (link
    )
  284. ^ .
  285. ^ .
  286. .
  287. .
  288. ^ .
  289. .
  290. doi:10.5194/bg-19-1795-2022.{{cite journal}}: CS1 maint: multiple names: authors list (link
    )
  291. ^ .
  292. .
  293. .
  294. .
  295. .
  296. .
  297. .
  298. .
  299. .
  300. ^ Starr, Michelle (16 May 2022). "Potentially Alive 830-Million-Year-Old Organisms Found Trapped in Ancient Rock". ScienceAlert. Retrieved 17 May 2022.
  301. S2CID 252695080
    .
  302. .
  303. .
  304. .
  305. .
  306. .
  307. .
  308. .
  309. .
  310. .
  311. .
  312. .
  313. .
  314. .
  315. .
  316. .
  317. .
  318. .
  319. .
  320. .
  321. .
  322. .
  323. .
  324. .
  325. .
  326. .
  327. .
  328. .
  329. .
  330. .
  331. .
  332. .
  333. .
  334. .
  335. .
  336. .
  337. .
  338. .
  339. .
  340. .
  341. .
  342. .
  343. .
  344. .
  345. .
  346. .
  347. .
  348. .
  349. .
  350. .
  351. .
  352. .
  353. .
  354. .
  355. .
  356. .
  357. .
  358. .
  359. .
  360. .
  361. .
  362. .
  363. .
  364. .
  365. .
  366. .
  367. .
  368. .
  369. .
  370. .
  371. .
  372. .
  373. .
  374. .
  375. .
  376. .
  377. .
  378. .
  379. .
  380. .
  381. .
  382. .
  383. .
  384. .
  385. .
  386. .
  387. .
  388. .
  389. .
  390. .
  391. .
  392. .
  393. .
  394. .
  395. .
  396. .
  397. .
  398. .
  399. .
  400. .
  401. .
  402. .
  403. .
  404. .
  405. .
  406. .
  407. from the original on 2022-01-10. Retrieved 2022-01-10.
  408. .
  409. .
  410. .
  411. .
  412. .
  413. .
  414. .
  415. .
  416. .
  417. .
  418. .
  419. .
  420. .
  421. .
  422. .
  423. .
  424. .
  425. .
  426. .
  427. .
  428. .
  429. .
  430. .
  431. .