2022 in paleoichthyology

Source: Wikipedia, the free encyclopedia.
List of years in paleoichthyology
In paleontology
2019
2020
2021
2022
2023
2024
2025
In paleobotany
2019
2020
2021
2022
2023
2024
2025
In arthropod paleontology
2019
2020
2021
2022
2023
2024
2025
In paleoentomology
2019
2020
2021
2022
2023
2024
2025
In paleomalacology
2019
2020
2021
2022
2023
2024
2025
In reptile paleontology
2019
2020
2021
2022
2023
2024
2025
In archosaur paleontology
2019
2020
2021
2022
2023
2024
2025
In mammal paleontology
2019
2020
2021
2022
2023
2024
2025

This list of

paleoichthyology
that occurred in 2022.

Jawless vertebrates

Name Novelty Status Authors Age Type locality Location Notes Images

Aenigmaspis[1]

Gen. et sp. nov

Valid

Thorsteinsson & Elliott

Silurian (Wenlock)

Cape Phillips Formation (Cornwallis Island

 Canada

A member of Pteraspidomorphi. Genus includes new species A. falcata.

Anjiaspis ericius[2]

Sp. nov

In press

Shan et al.

Silurian (Telychian)

Qingshui Formation

 China

A member of Eugaleaspidiformes.

Anomalaspis[1]

Gen. et sp. nov

Thorsteinsson & Elliott

 Canada

A member of Traquairaspidiformes belonging to the family Traquairaspididae. Genus includes new species A. lacruma. The generic name is shared with Anomalaspis Brennan (1952).[3]

Archegonaspis cornwallisensis[1]

Sp. nov

Valid

Thorsteinsson & Elliott

 Canada

A member of the family Cyathaspididae.

Arctictenaspis borealis[1]

Sp. nov

Valid

Thorsteinsson & Elliott

 Canada

A member of the family Ctenaspidae.

Ariaspis cristata[1]

Sp. nov

Valid

Thorsteinsson & Elliott

 Canada

A member of the family Ariaspidae.

Ariaspis majuscula[1]

Sp. nov

Valid

Thorsteinsson & Elliott

 Canada

A member of the family Ariaspidae.

Ariaspis multijubata[1]

Sp. nov

Valid

Thorsteinsson & Elliott

 Canada

A member of the family Ariaspidae.

Ariaspis nassichuki[1]

Sp. nov

Valid

Thorsteinsson & Elliott

 Canada

A member of the family Ariaspidae.

Ariaspis perryi[1]

Sp. nov

Valid

Thorsteinsson & Elliott

 Canada

A member of the family Ariaspidae.

Canadapteraspis formosa[1]

Sp. nov

Valid

Thorsteinsson & Elliott

 Canada

A member of the family Protopteraspididae.

Canadapteraspis uniformis[1]

Sp. nov

Valid

Thorsteinsson & Elliott

 Canada

A member of the family Protopteraspididae.

Corvaspis ellesmerensis[1]

Sp. nov

Valid

Thorsteinsson & Elliott

 Canada

A member of Heterostraci belonging to the group Corvaspidiformes and the family Corvaspididae.

Corvaspis porphyretica[1]

Sp. nov

Valid

Thorsteinsson & Elliott

 Canada

A member of Heterostraci belonging to the group Corvaspidiformes and the family Corvaspididae.

Corvaspis woodwardi[1]

Sp. nov

Valid

Thorsteinsson & Elliott

 Canada

A member of Heterostraci belonging to the group Corvaspidiformes and the family Corvaspididae.

Denisonaspis[1]

Gen. et sp. nov

Valid

Thorsteinsson & Elliott

 Canada

A member of the family Protopteraspididae. Genus includes new species D. borea.

Dinaspidella elegans[1]

Sp. nov

Valid

Thorsteinsson & Elliott

 Canada

A member of the family Cyathaspididae.

Dinaspidella tenuicostata[1]

Sp. nov

Valid

Thorsteinsson & Elliott

 Canada

A member of the family Cyathaspididae.

Eumorphaspis[1]

Gen. et comb. et 3 sp. nov

Valid

Thorsteinsson & Elliott

 Canada

A member of the family Cyathaspididae. Genus includes E. borealis (Denison, 1963), as well as new species E. goodsiri, E. lata and E. solitaria.

Geissonaspis[1]

Gen. et sp. nov

Valid

Thorsteinsson & Elliott

 Canada

A member of Heterostraci belonging to the group Cyathaspidiformes. Genus includes new species G. mutabilis.

Genetaspis[1]

Gen. et sp. nov

Valid

Thorsteinsson & Elliott

 Canada

A member of Heterostraci belonging to the group Cyathaspidiformes and the family Jarvikaspididae. Genus includes new species G. incohata.

Idanaspis[1]

Gen. et 2 sp. nov

Valid

Thorsteinsson & Elliott

 Canada

A member of Heterostraci. Genus includes new species I. dimidiata and I. reinsoni.

Jarvikaspis[1]

Gen. et 2 sp. nov

Valid

Thorsteinsson & Elliott

 Canada

A member of Heterostraci belonging to the group Cyathaspidiformes; the type genus of the new family Jarvikaspididae. Genus includes new species J. arctica and J. mauryensis.

Jiangxialepis jiujiangensis[4]

Sp. nov

In press

Shan, Zhao & Gai

Silurian (Telychian)

Qingshui Formation

 China

A member of Eugaleaspidiformes.

Kyphaspis[1]

Gen. et sp. nov

Valid

Thorsteinsson & Elliott

 Canada

A member of the family Cyathaspididae. Genus includes new species K. boothiaensis.

Nahanniaspis mclintocki[1]

Sp. nov

Valid

Thorsteinsson & Elliott

 Canada

A member of the family Cyathaspididae.

Orthogoniaspis[1]

Gen. et 2 sp. nov

Valid

Thorsteinsson & Elliott

 Canada

A member of Heterostraci belonging to the group

Weigeltaspididae
. Genus includes new species O. magnijubata and O. loefflerae.

Paralaspis[1]

Gen. et sp. nov

Valid

Thorsteinsson & Elliott

 Canada

A member of the family Cyathaspididae. Genus includes new species P. franklini.

Pionaspis ebenina[1]

Sp. nov

Valid

Thorsteinsson & Elliott

 Canada

A member of the family Cyathaspididae.

Pionaspis rossi[1]

Sp. nov

Valid

Thorsteinsson & Elliott

 Canada

A member of the family Cyathaspididae.

Prionotaspis[1]

Gen. et 2 sp. nov

Valid

Thorsteinsson & Elliott

 Canada

A member of the family Cyathaspididae. Genus includes new species P. miranda and possibly P? abbottensis.

Prosobranchiaspis[1]

Gen. et 2 sp. nov

Valid

Thorsteinsson & Elliott

 Canada

A member of the family Cyathaspididae. Genus includes new species P. prolatata and P. smithbayensis.

Pseudoanglaspis[1]

Gen. et 2 sp. nov

Valid

Thorsteinsson & Elliott

 Canada

A member of the family Cyathaspididae. Genus includes new species P. aquilonaris and P. minima.

Qingshuiaspis[2]

Gen. et sp. nov

In press

Shan et al.

Silurian (Telychian)

Qingshui Formation

 China

A member of Eugaleaspidiformes belonging to the family Shuyuidae. The type species is Q. junqingi.

Rimasventeraspis? halsteadi[1]

Sp. nov

Valid

Thorsteinsson & Elliott

 Canada

A member of Heterostraci belonging to the group Natlaspidiformes and the family Rimasventeraspididae.

Rimasventeraspis? septentrionalis[1]

Sp. nov

Valid

Thorsteinsson & Elliott

 Canada

A member of Heterostraci belonging to the group Natlaspidiformes and the family Rimasventeraspididae.

Soehnaspis[1]

Gen. et sp. nov

Valid

Thorsteinsson & Elliott

 Canada

A member of Heterostraci belonging to the group Cyathaspidiformes. Genus includes new species S. polaris.

Teleaspis[1]

Gen. et sp. nov

Valid

Thorsteinsson & Elliott

 Canada

A member of the family Cyathaspididae. Genus includes new species T. tersa.

Thuleaspis[1]

Gen. et sp. nov

Valid

Thorsteinsson & Elliott

 Canada

A member of Heterostraci belonging to the group Cyathaspidiformes and the family Jarvikaspididae. Genus includes new species T. canadensis.

Toraspis[1]

Gen. et sp. nov

Valid

Thorsteinsson & Elliott

 Canada

A member of Heterostraci belonging to the group Weigeltaspidiformes; the type genus of the new family Toraspididae. Genus includes new species T. somersetensis.

Traquairaspis longicarinata[1]

Sp. nov

Valid

Thorsteinsson & Elliott

 Canada

A member of Traquairaspidiformes belonging to the family Traquairaspididae.

Traquairaspis pristina[1]

Sp. nov

Valid

Thorsteinsson & Elliott

 Canada

A member of Traquairaspidiformes belonging to the family Traquairaspididae.

Trygonaspis[1]

Gen. et sp. nov

Valid

Thorsteinsson & Elliott

 Canada

A member of the family Protopteraspididae. Genus includes new species T. sicula.

Tujiaaspis[5]

Gen. et sp. nov

Valid

Gai et al.

Silurian (Telychian)

Huixingshao Formation

 China

A member of Eugaleaspidiformes; the anatomy of its articulated remains indicates that galeaspids possessed three unpaired dorsal fins, an approximately symmetrical hypochordal tail and a pair of continuous ventrolateral fins. The type species is T. vividus.

Vernonaspis magna[1]

Sp. nov

Valid

Thorsteinsson & Elliott

 Canada

A member of the family Cyathaspididae.

Vernonaspis parryi[1]

Sp. nov

Valid

Thorsteinsson & Elliott

 Canada

A member of the family Cyathaspididae.

Vernonaspis suffusca[1]

Sp. nov

Valid

Thorsteinsson & Elliott

 Canada

A member of the family Cyathaspididae.

Westollaspis[1]

Gen. et 3 sp. nov

Valid

Thorsteinsson & Elliott

 Canada

A member of Heterostraci belonging to the group Corvaspidiformes; the type genus of the new family Westollaspididae. Genus includes new species W. hyperborea, W. cordata and W. gigas.

Whiteaspis[1]

Gen. et sp. nov

Valid

Thorsteinsson & Elliott

 Canada

A member of Traquairaspidiformes belonging to the family Traquairaspididae. Genus includes new species W. spinifera.

Xitunaspis[6]

Gen. et sp. nov

Valid

Sun et al.

Devonian (Lochkovian)

Xitun Formation

 China

A member of Eugaleaspidiformes belonging to the family Eugaleaspidae. The type species is X. magnus.

Yongdongaspis[7]

Gen. et sp. nov

Valid

Chen et al.

Silurian (Llandovery)

Huixingshao Formation

 China

A member of Eugaleaspidiformes. Genus includes new species Y. littoralis.

Jawless vertebrate research

  • A study on the phylogenetic relationships and evolutionary history of lampreys is published by Brownstein & Near (2022), who find Mesomyzon mengae to be a member of the lamprey crown group, and argue that living lamprey biodiversity results from diversifications extending from the Cretaceous to present, rather than gradually accumulating since the Paleozoic.[8]
  • Chevrinais et al. (2022) describe the ontogeny of Euphanerops longaevus.[9]
  • Meng et al. (2022) describe new fossil material of Pterogonaspis yuhaii from the Devonian Xujiachong Formation (Yunnan, China), providing new information on the cranial anatomy of this galeaspid, including the first fossil evidence for the position of the esophagus in galeaspids.[10]
  • The first detailed description of the complex of external endolymphatic structures in headshields of members of the genus Tremataspis from the Silurian of Estonia, with tiny platelets located within the openings of the endolymphatic duct and possibly functioning as a sieve that allowed or prevented material from entering the inner ear, is published by Märss, Wilson & Viljus (2022).[11]

Placoderms

Name Novelty Status Authors Age Type locality Location Notes Images

Amazichthys[12]

Gen. et sp. nov

Valid

Jobbins et al.

Devonian (Famennian)

 Morocco

A member of the family Selenosteidae. The type species is A. trinajsticae.

Xiushanosteus[13]

Gen. et sp. nov

Valid

Zhu, Li, Ahlberg & Zhu in Zhu et al.

Silurian (Telychian)

Huixingshao Formation

 China

The type species is X. mirabilis.

Placoderm research

  • A study on the morphology and function of the antiarch jaw apparatus is published by Lebedev et al. (2022).[14]
  • Wang & Zhu (2022) describe the squamation and scale morphology of Parayunnanolepis xitunensis, recognize at least thirteen morphotypes of scales in P. xitunensis, and interpret their findings as indicative of the high regionalization of squamation at the root of jawed vertebrates.[15]
  • Zhu et al. (2022) redescribe the pelvic region of the holotype of Parayunnanolepis xitunensis, and report that, instead of having two large plates previously designated as dermal pelvic girdles, P. xitunensis had three pairs of lateral pelvic plates and one large oval median pelvic plate.[16]
  • Trinajstic et al. (2022) report preservation of a three-dimensionally mineralized heart, thick-walled stomach and bilobed liver from members of Arthrodira from the Devonian Gogo Formation (Australia), and interpret this finding as indicative of the presence of a flat S-shaped heart separated from the liver and other abdominal organs, and of the absence of lungs in members of Arthrodira;[17] subsequently Jensen et al. (2023) question evidence of the presence of a chambered heart in the studied fossil material presented by Trinajstic et al. (2022).[18][19]

Acanthodians

Name Novelty Status Authors Age Type locality Location Notes Images

Fanjingshania[20]

Gen. et sp. nov

Valid

Andreev, Sansom, Li, Zhao & Zhu in Andreev et al.

Silurian (probably Aeronian)

Rongxi Formation

 China

A probable relative of climatiid "acanthodians". The type species is F. renovata.

Acanthodian research

  • A study aiming to quantify the completeness of the acanthodian fossil record is published by Schnetz et al. (2022).[21]
  • A study on the biomechanical properties and likely function of bony spines in front of the fins of members of the genus Machaeracanthus is published by Ferrón et al. (2022).[22]

Cartilaginous fishes

Name Novelty Status Authors Age Type locality Location Notes Images

Carcharhinus dicelmai[23]

Sp. nov

Valid

Collareta et al.

Miocene (Burdigalian)

Chilcatay Formation

 Peru

A species of Carcharhinus.

Cretascymnus beauryi[24]

Sp. nov

Feichtinger et al.

Late Cretaceous (Maastrichtian)

Gerhartsreit Formation

 Austria

A member of the family Somniosidae.

Dalatias orientalis[25]

Sp. nov

Malyshkina et al.

Miocene

Duho Formation

 South Korea

A species of Dalatias.

Dallasiella brachyodon[26]

Sp. nov

Valid

Siversson, Cederström & Ryan

Late Cretaceous (Campanian)

Kristianstad Basin

 Sweden

A member of Lamniformes.

Desinia[27]

Gen. et sp. nov

Valid

Ivanov in Ivanov et al.

Permian

 Russia
( Kirov Oblast
 Komi Republic
 Mari El
 Tatarstan)

A member of the family Sphenacanthidae. The type species is D. radiata. Published online in 2023, but the issue date is listed as December 2022.[27]

Dracipinna[28]

Gen. et sp. nov

Valid

Pollerspöck & Straube

Late Oligocene and early Miocene

Ebelsberg Formation

 Austria
 Germany

A member of the family Dalatiidae. Genus includes new species D. bracheri.

Eoetmopterus davidi[24]

Sp. nov

Feichtinger et al.

Late Cretaceous (Maastrichtian)

Gerhartsreit Formation

 Austria

A member of the family Etmopteridae.

Fredipristis[24]

Gen et sp. nov

Feichtinger et al.

Late Cretaceous (Maastrichtian)

Gerhartsreit Formation

 Austria

A member of Squaliformes of uncertain affinities. The type species is F. eximia.

Gzhelodus[29]

Gen. et sp. nov

Valid

Ivanov

Carboniferous (KasimovianGzhelian)

 Russia
( Moscow Oblast
 Samara Oblast
 Volgograd Oblast)

A member of

Euselachii belonging to the family Protacrodontidae
. The type species is G. serratus.

Heslerodoides[29]

Gen. et sp. nov

Valid

Ivanov

Carboniferous (Bashkirian–Gzhelian)

Zilim Formation

 Brazil
 Russia
( Bashkortostan
 Moscow Oblast)

A member of Ctenacanthiformes belonging to the family Heslerodidae. The type species is H. triangularis.

Parvodus huizodus[30]

Sp. nov

Wen et al.

Early Triassic

Dongchuan Formation

 China

A member of Hybodontiformes.

Proetmopterus lukasi[24]

Sp. nov

Feichtinger et al.

Late Cretaceous (Maastrichtian)

Gerhartsreit Formation

 Austria

A member of the family Etmopteridae.

Protoxynotus mayrmelnhofi[31]

Sp. nov

Feichtinger et al.

Late Cretaceous (Maastrichtian)

Gerhartsreit Formation

 Austria

A member of the family Somniosidae.

Samarodus[29]

Gen. et sp. nov

Valid

Ivanov

Carboniferous (Moscovian–Gzhelian)

 Russia
( Bashkortostan
 Moscow Oblast
 Samara Oblast
Pechora Sea)

A shark of uncertain affinities. The type species is S. flexus.

Scyliorhinus weemsi[32]

Sp. nov

Valid

Cicimurri, Knight & Ebersole

Oligocene (Rupelian)

Ashley Formation

 United States
( South Carolina)

A species of Scyliorhinus.

Strophodus rebecae[33]

Sp. nov

Valid

Carrillo-Briceño & Cadena

Early Cretaceous (Valanginian-Hauterivian)

Rosablanca Formation

 Colombia

A member of Hybodontiformes belonging to the family Acrodontidae.

Taeniurops tosii[34]

Sp. nov

Adnet & Charpentier

Miocene (Aquitanian)

 Oman

A stingray, a species of Taeniurops.

Cartilaginous fish research

  • Duffin, Lauer & Lauer (2022) describe chimaeroid egg cases from the Upper Jurassic (
    Altmühltal Formation (Germany), probably produced by Ischyodus quenstedti, and name a new ichnotaxon Chimaerotheca schernfeldensis.[35]
  • Revision of the fossil material originally attributed to Bibractopiscis niger and Orthacanthus commailli, and a study on the implications of these fossils for the knowledge of the evolution of neurocranium in "
    xenacanthiforms, is published by Luccisano et al. (2022).[36]
  • A study on the evolutionary history of members of the genus Orthacanthus from France and on their relationships with the other European species is published by Luccisano et al. (2022).[37]
  • Greif, Ferrón & Klug (2022) describe the first known fossil cartilage remains from the Devonian Hangenberg black shale from the Moroccan Anti-Atlas, and interpret its morphology as suggestive of ctenacanth affiliation.[38]
  • Taxonomic reassessment of a hybodontiform dental assemblage from the lower Kimmeridgian of Czarnogłowy (Poland), and a study on the implications of this assemblage for the knowledge of ecology and biogeography of cartilaginous fishes prior to the Jurassic/Cretaceous transition, is published by Stumpf, Meng & Kriwet (2022)[39]
  • Fossil teeth of sharks belonging to the groups Hexanchiformes, Echinorhiniformes, Squaliformes and Lamniformes, including the first record of Protosqualus in northwestern Pacific reported to date, are described from the Upper Cretaceous Nishichirashinai and Omagari formations (Yezo Group, Japan) by Kanno et al. (2022).[40]
  • New fossil material of Xampylodon dentatus, including more complete teeth or specimens representing teeth of different positions than most previous records, and the oldest fossil material of Rolfodon tatere reported to date is described from the Upper Cretaceous (Campanian) of James Ross Island (Antarctica) by dos Santos et al. (2022).[41]
  • Feichtinger et al. (2022) describe isolated teeth of Protoxynotus misburgensis from the Santonian of Lebanon, representing the first known record of this species from the southern Tethyan Realm, and interpret this finding as indicating that Protoxynotus and Cretascymnus occupied overlapping or similar habitats during the Late Cretaceous.[42]
  • Herraiz et al. (2022) describe teeth of a member of the genus
    Trigonognathus from the El Ferriol outcrop (Miocene of Spain), representing the first known record of this genus from the Mediterranean realm.[43]
  • Revision of the fossil record of the genus Echinorhinus in South America is published by Bogan & Agnolín (2022), who consider Echinorhinus pozzi and Echinorhinus maremagnum to be valid species, and consider E. maremagnum to be distinct from Echinorhinus lapaoi.[44]
  • A study on the anatomy, growth and ecology of Cretodus crassidens, based on data from a specimen from the Turonian "Lastame" lithofacies of the Scaglia Rossa Veneta (Lessini Mountains, Veneto, northeastern Italy), is published by Amalfitano et al. (2022).[45]
  • A tooth of Cetorhinus huddlestoni, as well as gill rakers differing from previously described cetorhinids and referred to the same species as the tooth, are described from the Miocene Duho Formation (South Korea) by Malyshkina, Nam & Kwon (2022).[46]
  • A study aiming to determine whether the observed body forms of lamniform sharks are influenced by thermophysiology, and reevaluating the body form of Otodus megalodon proposed by Cooper et al. (2020),[47] is published by Sternes, Wood & Shimada (2022).[48]
  • A study on the putative nursery areas and body size patterns across different populations of Otodus megalodon is published by Shimada et al. (2022), who report that specimens of O. megalodon are on average larger in cooler water than those in warmer water, and argue that the previously identified nursery areas may reflect temperature-dependent trends rather than the inferred reproductive strategy.[49]
  • McCormack et al. (2022) demonstrate the use of zinc isotopes to assess the trophic level in extant and extinct sharks, and interpret their findings as indicative of dietary shifts throughout the Neogene in sharks belonging to the genera Otodus and Carcharodon, and indicating that Early Pliocene sympatric great white sharks and Otodus megalodon likely occupied a similar mean trophic level.[50]
  • Evidence from nitrogen isotope ratios in fossil teeth of members of the genus Otodus, indicating that O. megalodon occupied a higher trophic level than is known for any marine species, extinct or extant, is presented by Kast et al. (2022).[51]
  • Cooper et al. (2022) create the first three-dimensional model of the body of Otodus megalodon and use it to infer its movement and feeding ecology, interpreting it as likely able to swim great distances and to feed on prey as large as modern apex predators.[52]
  • A study on tooth marks on physeteroid bones from the Miocene Pisco Formation (Peru) is published by Benites-Palomino et al. (2022), who interpret their findings as indicating that Miocene sharks were actively targeting the foreheads of physeteroids to feed on their lipid-rich nasal complexes, with the shape and distribution of the bite marks suggesting a series of consecutive scavenging events by members of different shark species.[53]
  • A study on the evolutionary history of carcharhiniform sharks is published by Brée, Condamine & Guinot (2022), who interpret their findings as indicative of an early low diversity period followed by a radiation exacerbated since 30 million years ago, as well as indicating that variations in diversification through time were likely linked to reef expansion and temperature change.[54]
  • Greenfield, Delsate & Candoni (2022) coin a new name Toarcibatidae for the family of Toarcian batomorphs previously referred to as Archaeobatidae.[55]
  • A study on the microstructure of rostral denticles of Ischyrhiza mira is published by Cook et al. (2022)[56]
  • New record of large dermal tubercles and bucklers, including tubercles similar in morphology to "Ceratoptera unios" and dermal bucklers similar in morphology to those of the extant roughtail stingray, is reported from the Lower Pleistocene Waccamaw Formation (South Carolina, United States) by Boessenecker & Gibson (2022), who interpret this findings as likely fossils of large stingrays in excess of 3 m disc width.[57]
  • A study on the phylogenetic relationships of extant and fossil rays and skates is published by Villalobos-Segura et al. (2022).[58]
  • A study on the completeness of the chondrichthyan fossil record from Florida, aiming to determine patterns in taxonomic and ecomorphological diversity of Eocene to Pleistocene chondrichthyans from the Florida Platform, is published by Perez (2022).[59]
  • Szabó et al. (2022) describe an assemblage of cartilaginous fishes from the Miocene Tekeres Schlieren Member of the Baden Formation (Hungary), including the first known records of deepwater cartilaginous fishes from the Badenian of the Central Paratethys.[60]
  • Fossil material of a diverse shark and ray fauna is reported from the early Pleistocene of Taiwan by Lin, Lin & Shimada (2022).[61]

Ray-finned fishes

Name Novelty Status Authors Age Type locality Location Notes Images

Acentrogobius matsya[62]

Sp. nov

In press

Carolin et al.

Miocene (Burdigalian)

Quilon Formation

 India

A species of Acentrogobius.

Acipenser amnisinferos[63]

Sp. nov

Valid

Hilton & Grande

Late Cretaceous (Maastrichtian)

Hell Creek Formation

 United States
( North Dakota)

A species of Acipenser.

Acipenser praeparatorum[63]

Sp. nov

Valid

Hilton & Grande

Late Cretaceous (Maastrichtian)

Hell Creek Formation

 United States
( North Dakota)

A species of Acipenser.

Allocyclostoma[64]

Gen. et sp. nov

In press

Schwarzhans, Stringer & Welton

Early Cretaceous (Albian)

Pawpaw Formation

 United States
( Texas)

Possibly a member of

Polymixiiformes
. The type species is A. alienus.

Amblyeleotris kireedam[62]

Sp. nov

In press

Carolin et al.

Miocene (Burdigalian)

Quilon Formation

 India

A species of Amblyeleotris.

Ancistrogobius indicus[62]

Sp. nov

In press

Carolin et al.

Miocene (Burdigalian)

Quilon Formation

 India

A species of Ancistrogobius.

Anisotremus rambo[65]

Sp. nov

Valid

Lin & Nolf

Eocene

 United States
( Alabama
 Louisiana
 Texas)

A species of Anisotremus.

Archaeotolithus doppelsteini[66]

Sp. nov

Valid

Schwarzhans & Keupp

Early Jurassic (Pliensbachian)

Amaltheenton Formation

 Germany

A member of Actinopterygii of uncertain affinities.

Arconiapogon[67]

Gen. et sp. nov

Valid

Marramà, Giusberti & Carnevale

Oligocene (Rupelian)

 Italy

A member of the family Apogonidae belonging to the subfamily Apogoninae. The type species is A. deangelii.

Argentina? texana[64]

Sp. nov

In press

Schwarzhans, Stringer & Welton

Early Cretaceous (Albian)

Pawpaw Formation

 United States
( Texas)

Possibly a species of Argentina.

Armigatus felixi[68]

Sp. nov

In press

Than-Marchese & Alvarado-Ortega

Early Cretaceous (Albian)

Tlayúa Formation

 Mexico

Astroscopus compactus[65]

Sp. nov

Valid

Lin & Nolf

Eocene

Gosport Sand

 United States
( Alabama
 Mississippi)

A species of Astroscopus.

Atractosteus grandei[69]

Sp. nov

Brownstein & Lyson

Paleogene (Danian)

Fort Union Formation

 United States
( North Dakota)

A gar, a species of Atractosteus.

Bellottia verecunda[70]

Sp. nov

Valid

Carnevale & Schwarzhans

Miocene (Messinian) and Pliocene[71]

 Italy
 Spain[71]

A species of Bellottia.

Benthosema taurinense[70]

Sp. nov

Valid

Carnevale & Schwarzhans

Miocene (Tortonian and Messinian)

 Italy

A species of Benthosema.

Bidenichthys mediterraneus[71]

Sp. nov

Valid

Van Hinsbergh & Hoedemakers

Pliocene

 Spain

A species of Bidenichthys.

Blennius vernyhorovae[72]

Sp. nov

Schwarzhans, Klots & Kovalchuk in Schwarzhans et al.

Miocene

 Ukraine

A species of Blennius.

Bolinichthys higashibesshoensis[73]

Sp. nov

Valid

Schwarzhans et al.

Miocene

Higashibessho Formation

 Japan

A species of Bolinichthys.

Bostrychus marsilii[70]

Sp. nov

Valid

Carnevale & Schwarzhans

Miocene (Messinian)

 Italy

A species of Bostrychus.

Bradyurus alessandroi[74]

Sp. nov

Valid

Bannikov & Zorzin

Eocene

Monte Bolca

 Italy

A member of Percoidei of uncertain phylogenetic placement.

Buenia pulvinus[71]

Sp. nov

Valid

Van Hinsbergh & Hoedemakers

Pliocene

 Morocco[75]
 Spain

A species of Buenia.

Caboellimma[76]

Gen. et comb. nov

De Figueiredo & Gallo

Early Cretaceous

Cabo Formation

 Brazil

A member of

Clupeomorpha belonging to the group Ellimmichthyiformes
; a new genus for "Ellimma" cruzae Santos (1990).

Callionymus vyali[62]

Sp. nov

In press

Carolin et al.

Miocene (Burdigalian)

Quilon Formation

 India

A species of Callionymus.

Calypsoichthys[77]

Gen. et sp. nov

Valid

Argyriou et al.

Late Cretaceous (Maastrichtian)

 Greece

A member of the family Enchodontidae. The type species is C. pavlakiensis.

Cantarius ohei[78]

Sp. nov

Schwarzhans et al.

Miocene

Pebas Formation

 Peru

A member of the family Ariidae.

Capassopiscis[79]

Gen. et sp. nov

Valid

Taverne

Late Cretaceous (Cenomanian)

 Lebanon

A member of the family Pantodontidae. The type species is C. pankowskii.

Centroberyx vaalsensis[80]

Sp. nov

In press

Schwarzhans & Jagt

Late Cretaceous (Campanian)

Vaals Formation

 Netherlands

A species of Centroberyx.

Ceratoscopelus brevis[73]

Sp. nov

Valid

Schwarzhans et al.

Miocene

Takakura Formation

 Japan

A species of Ceratoscopelus.

Chaetodon wattsi[67]

Sp. nov

Valid

Marramà, Giusberti & Carnevale

Oligocene (Rupelian)

 Italy

A species of Chaetodon.

Cheirolepis bychovensis[81]

Sp. nov

Valid

Plax

Devonian (Emsian and Eifelian)

Lepel Beds

 Belarus

An early ray-finned fish.

Cichlasoma bluntschlii[78]

Sp. nov

Schwarzhans et al.

Miocene

Pebas Formation

 Peru

A species of Cichlasoma.

Cirripectes biconvexus[62]

Sp. nov

In press

Carolin et al.

Miocene (Burdigalian)

Quilon Formation

 India

A species of Cirripectes.

"Citharus" varians[65]

Sp. nov

Valid

Lin & Nolf

Eocene

Cook Mountain Formation

 United States
( Alabama
 Texas)

A member of the family Citharidae.

Concentrilepis[82]

Gen. et sp. nov

Valid

Stack & Gottfried

Permian (Kungurian)

Minnekahta Limestone

 United States
( South Dakota)

An early ray-finned fish with anatomical features of the paraphyletic "paleoniscoids". The type species is C. minnekahtaensis.

Coreoperca chosun[83]

Sp. nov

In press

Nam, Nazarkin & Bannikov

Early Miocene

Geumgwangdong Formation

 South Korea

A species of Coreoperca.

Coris medoboryensis[72]

Sp. nov

Schwarzhans, Klots & Kovalchuk in Schwarzhans et al.

Miocene

 Ukraine

A species of Coris.

Cuneatus maximus[84]

Sp. nov

Valid

Brownstein

Late Paleocene to early Eocene

Willwood Formation

 United States
( Wyoming)

A gar.

Diaphus epipedus[73]

Sp. nov

Valid

Schwarzhans et al.

Miocene

Takakura Formation

 Japan

A species of Diaphus.

Diaphus mermuysi[71]

Sp. nov

Valid

Van Hinsbergh & Hoedemakers

Pliocene

 Spain

A species of Diaphus.

Diaphus postcavallonis[71]

Sp. nov

Valid

Van Hinsbergh & Hoedemakers

Pliocene

 Spain

A species of Diaphus.

Diaphus watatsumi[73]

Sp. nov

Valid

Schwarzhans et al.

Miocene

Takakura Formation

 Japan

A species of Diaphus.

Dicentrarchus oligocenicus[85]

Sp. nov

In press

Grădianu, Bordeianu & Codrea

Oligocene

Bituminous Marls Formation

 Romania

A species of Dicentrarchus.

Drombus thackerae[62]

Sp. nov

In press

Carolin et al.

Miocene (Burdigalian)

Quilon Formation

 India

A species of Drombus.

Elopothrissus bernardlemorti[65]

Sp. nov

Valid

Lin & Nolf

Eocene

 United States
( Alabama
 Texas)

A member of

Albuliformes
.

Elopothrissus pawpawensis[64]

Sp. nov

In press

Schwarzhans, Stringer & Welton

Early Cretaceous (Albian)

Pawpaw Formation

 United States
( Texas)

Eosciaena[86]

Gen. et sp. nov

Valid

Stringer, Parmley & Quinn

Eocene (Bartonian)

Clinchfield Formation

 United States
( Georgia (U.S. state)
 Louisiana[65])

A member of the family Sciaenidae. The type species is E. ebersolei.

Fibramia keralensis[62]

Sp. nov

In press

Carolin et al.

Miocene (Burdigalian)

Quilon Formation

 India

A species of Fibramia.

Fowleria velerinensis[71]

Sp. nov

Valid

Van Hinsbergh & Hoedemakers

Pliocene

 Spain

A species of Fowleria.

Francischanos[87]

Gen. et comb. nov

In press

Ribeiro, Bockmann & Poyato-Ariza

Early Cretaceous (Aptian)

Quiricó Formation

 Brazil

A member of the family Chanidae; a new genus for "Dastilbe" moraesi Silva-Santos (1955).

Fusigobius? venadicus[62]

Sp. nov

In press

Carolin et al.

Miocene (Burdigalian)

Quilon Formation

 India

Possibly a species of Fusigobius.

Genartina princeps[64]

Sp. nov

In press

Schwarzhans, Stringer & Welton

Early Cretaceous (Albian)

Pawpaw Formation

 United States
( Texas)

A

Albuliformes
.

Germanostomus[88]

Gen. et sp. nov

Valid

Cooper et al.

Early Jurassic (Toarcian)

Posidonia Shale

 Germany

A member of the family

Asthenocorminae
. The type species is G. pectopteri.

Gerres mlynskyi[89]

Sp. nov

Valid

Brzobohatý, Zahradníková & Hudáčková

Miocene

Vienna Basin

 Austria
 France
 Poland
 Slovakia

A species of Gerres.

"aff. Glyptophidium" stringeri[65]

Sp. nov

Valid

Lin & Nolf

Eocene

 United States
( Alabama
 Mississippi
 Texas)

A cusk-eel.

Gnathophis henkmulderi[71]

Sp. nov

Valid

Van Hinsbergh & Hoedemakers

Pliocene

 Spain

A species of Gnathophis.

Gobiodon burdigalicus[62]

Sp. nov

In press

Carolin et al.

Miocene (Burdigalian)

Quilon Formation

 India

A species of Gobiodon.

Gobius alboranensis[71]

Sp. nov

Valid

Van Hinsbergh & Hoedemakers

Pliocene

 Spain

A species of Gobius.

Gobius bratishkoi[72]

Sp. nov

Schwarzhans, Klots & Kovalchuk in Schwarzhans et al.

Miocene

 Ukraine

A species of Gobius.

Gobius lombartei[71]

Sp. nov

Valid

Van Hinsbergh & Hoedemakers

Pliocene

 Spain

A species of Gobius.

"Gobius" pterois[71]

Sp. nov

Valid

Van Hinsbergh & Hoedemakers

Pliocene

 Spain

A possible species of Gobius.

Gobius ukrainicus[72]

Sp. nov

Schwarzhans, Klots & Kovalchuk in Schwarzhans et al.

Miocene

 Ukraine

A species of Gobius.

Harenaichthys[90]

Gen. et sp. nov

In press

Kim et al.

Late Cretaceous (Maastrichtian)

Nemegt Formation

 Mongolia

A member of Osteoglossomorpha. The type species is H. lui.

Ichthyotringa? cuneata[64]

Sp. nov

In press

Schwarzhans, Stringer & Welton

Early Cretaceous (Albian)

Pawpaw Formation

 United States
( Texas)

A member of Aulopiformes belonging to the family Ichthyotringidae.

Ichthyotringa pindica[77]

Sp. nov

Valid

Argyriou et al.

Late Cretaceous (Maastrichtian)

 Greece

Italopterus[91]

Gen. et comb. nov

Valid

Shen & Arratia

Triassic

 Italy

A member of the family Thoracopteridae. Genus includes "Thoracopterus" magnificus Tintori & Sassi (1987) and "Thoracopterus" martinisi Tintori & Sassi (1992).

Jaydia? quilonica[62]

Sp. nov

In press

Carolin et al.

Miocene (Burdigalian)

Quilon Formation

 India

Possibly a species of Jaydia.

Jenynsia herbsti[92]

Sp. nov

Valid

Sferco et al.

Late Miocene

 Argentina

A species of

Jenynsia
.

Kaykay[93]

Gen. et sp. nov

Valid

Gouiric-Cavalli & Arratia

Jurassic (Oxfordian stage)

 Argentina

A member of Pachycormiformes. Genus includes new species K. lafken.

Kryptophanaron nolfi[71]

Sp. nov

Valid

Van Hinsbergh & Hoedemakers

Pliocene

 Spain

A species of Kryptophanaron.

Kutaichthys[94]

Gen et 2 sp. nov

Valid

Bakaev in Esin & Bakaev

Permian

 Russia
( Komi Republic
 Perm Krai
 Samara Oblast)

An early ray-finned fish belonging to the group Palaeonisciformes and the family Palaeoniscidae. The type species is K. gubini Esin & Bakaev; genus also includes K. dozmerensis Esin & Bakaev. Published online in 2023, but the issue date is listed as December 2022.[94]

Lampadena exima[73]

Sp. nov

Valid

Schwarzhans et al.

Miocene

Takakura Formation

 Japan

A species of Lampadena.

Lampanyctus beczynensis[95]

Sp. nov

Valid

Schwarzhans & Radwańska

Miocene (Langhian)

 Poland

A species of Lampanyctus.

Lampanyctus lenticularis[73]

Sp. nov

Valid

Schwarzhans et al.

Miocene

Takakura Formation

 Japan

A species of Lampanyctus.

Lampanyctus tsuyamaensis[73]

Sp. nov

Valid

Schwarzhans et al.

Miocene

Takakura Formation

 Japan

A species of Lampanyctus.

Leptolepis buttenheimensis[66]

Sp. nov

Valid

Schwarzhans & Keupp

Early Jurassic (Pliensbachian)

Amaltheenton Formation

 Germany

Extinct species of ray finned fish.

Leptolepis steberae[66]

Sp. nov

Valid

Schwarzhans & Keupp

Early Jurassic (Pliensbachian)

Amaltheenton Formation

 Germany

Libyachromis[96]

Gen. et sp. nov

Valid

Přikryl, Kaur & Murray

Oligocene

 Libya

A cichlid belonging to the subfamily Pseudocrenilabrinae. The type species is L. fugacior.

Lophionotus parnaibensis[97]

Sp. nov

In press

Gallo et al.

Late Jurassic

Pastos Bons Formation

 Brazil

A member of the family

Semionotidae
.

Makaira colonense[98]

Sp. nov

Valid

De Gracia et al.

Late Miocene

Chagres Formation

 Panama

A species of Makaira.

Makaira fierstini[98]

Sp. nov

Valid

De Gracia et al.

Late Miocene

Gatún Formation

 Panama

A species of Makaira.

Marcopoloichthys furreri[99]

Sp. nov

Valid

Arratia

Middle Triassic (Ladinian)

Upper Prosanto Formation

  Switzerland

A member of

Marcopoloichthyidae
.

Medoborichthys[72]

Gen. et 2 sp. nov

Schwarzhans, Klots & Kovalchuk in Schwarzhans et al.

Miocene

 Ukraine

A member of the family Gobiidae belonging to the Priolepis lineage within the subfamily Gobiinae. The type species is M. renesulcis; genus also includes M. podolicus.

Mene garviei[65]

Sp. nov

Valid

Lin & Nolf

Eocene

Cook Mountain Formation

 United States
( Texas)

A species of Mene.

Minicholepis[100]

Gen et sp. nov

Valid

Bulanov, Minikh & Golubev

Permian

 Russia
( Kirov Oblast)

A member of Eurynotoidiformes. The type species is M. primus. Published online in 2023, but the issue date is listed as December 2022.[100]

Moldavigobius[101]

Gen. et sp. et comb. nov

Valid

Reichenbacher & Bannikov

Miocene

 Moldova
 Turkey

A member of the family Gobiidae. The type species is M. helenae; genus also includes "Knipowitschia" suavis Schwarzhans (2014).

Morgula[98]

Gen. et sp. nov

Valid

De Gracia et al.

Late Miocene

Chagres Formation

 Panama

A marlin. The type species is M. donosochagrense.

"Muraenesox" barrytownensis[65]

Sp. nov

Valid

Lin & Nolf

Eocene

Lisbon Formation

 United States
( Alabama
 Texas)

A member of the family Muraenesocidae.

Neoopisthopterus weltoni[65]

Sp. nov

Valid

Lin & Nolf

Eocene

Cook Mountain Formation

 United States
( Texas)

A species of Neoopisthopterus.

Nezumia prikryli[102]

Sp. nov

Valid

Schwarzhans

Miocene (Langhian)

 Czech Republic

A species of Nezumia.

Notogoneus maarvelis[103]

Sp. nov

Valid

Grande & Wilson in Grande et al.

Late Cretaceous (Campanian)

 Canada
( Northwest Territories)

A member of the family Gonorynchidae.

Nusaviichthys[104]

Gen. et sp. nov

In press

Alvarado-Ortega & Alves

Early Cretaceous (Albian)

 Mexico

A member of Crossognathiformes belonging to the family Notelopidae. The type species is N. nerivelai.

Oechsleria[105]

Gen. et sp. nov

In press

Micklich & Bannikov

Oligocene (Rupelian)

Bodenheim Formation

 Germany

A member of the family Veliferidae. The type species is O. unterfeldensis.

Oligophus bartonensis[106]

Sp. nov

Valid

Schwarzhans & Carnevale

Eocene (Bartonian)

Marne di Monte Piano Formation

 Italy

A lanternfish.

Oligopseudamia[67]

Gen. et sp. nov

Valid

Marramà, Giusberti & Carnevale

Oligocene (Rupelian)

 Italy

A member of the family Apogonidae belonging to the subfamily Pseudaminae. The type species is O. iancurtisi.

Oniketia[67]

Gen. et sp. nov

Valid

Marramà, Giusberti & Carnevale

Oligocene (Rupelian)

 Italy

A member of the family Gobiidae. The type species is O. akihitoi.

Pagellus pamunkeyensis[65]

Sp. nov

Valid

Lin & Nolf

Eocene

Piney Point Formation

 United States
( Virginia)

A species of Pagellus.

Palaeoneiros[107]

Gen. et sp. nov

Valid

Giles et al.

Devonian (Famennian)

Chadakoin Formation

 United States
( Pennsylvania)

An early ray-finned fish with affinities to post-Devonian species Wendyichthys dicksoni and Cyranorhis bergeraci. Genus includes new species P. clackorum.

Paleoschizothorax diluculum[108]

Sp. nov

Valid

Yang et al.

Oligocene

Shangganchaigou Formation

 China

A member of the family Cyprinidae related to Schizothorax.

Paraconger pinguis[71]

Sp. nov

Valid

Van Hinsbergh & Hoedemakers

Pliocene

 Spain

A species of Paraconger.

Paraconger wechesensis[65]

Sp. nov

Valid

Lin & Nolf

Eocene

Weches Formation

 United States
( Texas)

A species of Paraconger.

Parascombrops yanceyi[65]

Sp. nov

Valid

Lin & Nolf

Eocene

 United States
( Texas)

A species of Parascombrops.

Paraulopus wichitae[64]

Sp. nov

In press

Schwarzhans, Stringer & Welton

Early Cretaceous (Albian)

Pawpaw Formation

 United States
( Texas)

A species of Paraulopus.

Parenypnias[72]

Gen. et 2 sp. nov

Schwarzhans, Klots & Kovalchuk in Schwarzhans et al.

Miocene

 Czech Republic
 Ukraine

A member of the family Gobiidae belonging to the subfamily Gobiinae and the tribe Gobiosomatini. The type species is P. inauditus; genus also includes P. kiselevi.

Pavarottia astescalpone[109]

Sp. nov

Valid

Bannikov & Zorzin

Eocene

Monte Bolca

 Italy

A member of Percoidei belonging to the family Pavarottiidae.

Pebasciaena[78]

Gen. et sp. nov

Schwarzhans et al.

Miocene

Pebas Formation

 Peru

A member of the family Sciaenidae. The type species is P. amazonensis.

Piratata[110]

Gen. et sp. nov

In press

Richter et al.

Permian (Cisuralian)

Pedra de Fogo Formation

 Brazil

A deep-scaled ray-finned fish. Genus includes new species P. rogersmithii.

Plagioscion peyeri[78]

Sp. nov

Schwarzhans et al.

Miocene

Pebas Formation

 Peru

A species of Plagioscion.

Pleuropholis germinalis[111]

Sp. nov

Valid

Olive, Taverne & Brito

Early Cretaceous (Barremian to Aptian)

Sainte-Barbe Clays Formation

 Belgium

Pogonias tetragonus[78]

Sp. nov

Schwarzhans et al.

Miocene

Pebas Formation

 Peru

A species of Pogonias.

Polyspinatus[112]

Gen. et sp. nov

Schrøder et al.

Eocene

Fur Formation

 Denmark

A beardfish. Genus includes new species P. fluere.

Prionotus arenarius[71]

Sp. nov

Valid

Van Hinsbergh & Hoedemakers

Pliocene

 Spain

A species of Prionotus.

Pristigenys adrianae[71]

Sp. nov

Valid

Van Hinsbergh & Hoedemakers

Pliocene

 Spain

A species of Pristigenys.

Protoholocentrus[80]

Gen. et sp. nov

In press

Schwarzhans & Jagt

Late Cretaceous (Campanian)

Vaals Formation

 Netherlands

A member of

Holocentriformes
of uncertain affinities. The type species is P. janjanssensi.

Prototetrapturus[98]

Gen. et comb. nov

Valid

De Gracia et al.

Miocene (Messinian)

 Algeria

A marlin. The type species is "Xiphiorhynchus" courcelli Arambourg (1927).

Pseudophichthys texanus[65]

Sp. nov

Valid

Lin & Nolf

Eocene

Weches Formation

 United States
( Alabama
 Mississippi
 Texas
 Virginia)

A species of Pseudophichthys.

Pythonichthys gibbosus[71]

Sp. nov

Valid

Van Hinsbergh & Hoedemakers

Pliocene

 Spain

A species of Pythonichthys.

Saurenchelys silex[71]

Sp. nov

Valid

Van Hinsbergh & Hoedemakers

Pliocene

 Morocco[75]
 Spain

A species of Saurenchelys.

Saurichthys sui[113]

Sp. nov

In press

Fang & Wu

Late Triassic

Junggar Basin

 China

Saurichthys taotie[114]

Sp. nov

Valid

Fang et al.

Late Triassic (Carnian)

Xiaowa Formation

 China

Announced in 2022; the final article version was published in 2023.

Scomber collettei[115]

Sp. nov

Valid

Bannikov & Erebakan

Miocene

 Russia
( Krasnodar Krai)

A species of Scomber.

Seinstedtia[116]

Gen. et sp. nov

Valid

Schultze et al.

Late Triassic (Norian)

 Germany

A member of Teleosteomorpha of uncertain affinities. The type species is S. parva.

Sillaginocentrus crispus[80]

Sp. nov

In press

Schwarzhans & Jagt

Late Cretaceous (Campanian)

Vaals Formation

 Netherlands

A member of Holocentriformes of uncertain affinities.

Siphamia minor[62]

Sp. nov

In press

Carolin et al.

Miocene (Burdigalian)

Quilon Formation

 India

A species of Siphamia.

Smithconger[117]

Gen. et comb. nov

Valid

Carnevale et al.

Eocene

Lillebælt Clay Formation

 Denmark
 New Zealand

A member of the family Congridae. The type species is "Pseudoxenomystax" treldeensis Schwarzhans (2007); genus also includes "Bathycongrus" waihaoensis Schwarzhans (2019).

Snyderina stillaformis[71]

Sp. nov

Valid

Van Hinsbergh & Hoedemakers

Pliocene

 Spain

A species of Snyderina.

Somalichromis[118]

Gen. et sp. nov

Murray

Oligocene

Daban Series

Somaliland

A cichlid belonging to the subfamily Pseudocrenilabrinae. The type species is S. hadrocephalus.

Spathochoira[98]

Gen. et comb. nov

Valid

De Gracia et al.

Late Miocene

Eastover Formation

 United States
( Virginia)

A marlin. The type species is "Istiophorus" calvertensis Berry (1917).

Spinascutichthys[119]

Gen. et sp. nov

Valid

Murray, Chida & Holmes

Late Cretaceous (Cenomanian)

 Lebanon

A member of Aulopiformes belonging to the group Enchodontoidei. Genus includes new species S. pankowskiae.

Stenobrachius ohashii[73]

Sp. nov

Valid

Schwarzhans et al.

Miocene

Kurosedani Formation

 Japan

A species of Stenobrachius.

Stenobrachius sangsunii[120]

Sp. nov

Nam & Nazarkin

Miocene

Duho Formation

 South Korea

A species of Stenobrachius.

Sturisomatichthys podgornyi[121]

Sp. nov

Valid

Bogan & Agnolin

Late Miocene

 Argentina

A species of Sturisomatichthys.

Symmetrosulcus dockeryi[65]

Sp. nov

Valid

Lin & Nolf

Eocene

Weches Formation

 United States
( Alabama
 Mississippi
 Texas)

A cusk-eel.

Teffichthys elegans[122]

Sp. nov

Valid

Yuan et al.

Early Triassic (Induan)

Daye Formation

 China

A member of the family

Perleididae
.

Texoma[64]

Gen. et sp. nov

In press

Schwarzhans, Stringer & Welton

Early Cretaceous (Albian)

Pawpaw Formation

 United States
( Texas)

Possibly a member of Polymixiiformes. The type species is T. cyclogaster.

Thorogobius antirostratus[89]

Sp. nov

Valid

Brzobohatý, Zahradníková & Hudáčková

Miocene

Vienna Basin

 Slovakia

A species of Thorogobius.

Thorogobius mirbachae[71]

Sp. nov

Valid

Van Hinsbergh & Hoedemakers

Pliocene

 Spain

A species of Thorogobius.

Trachinus meridianus[123]

Sp. nov

Valid

Schwarzhans & Kovalchuk

Miocene

 Poland
 Ukraine

A species of Trachinus.

Umbrina pachaula[78]

Sp. nov

Schwarzhans et al.

Miocene

Pebas Formation

 Peru

A species of Umbrina.

Vologdinia[100]

Gen et comb. nov

Valid

Bulanov, Minikh & Golubev

Permian

Poldarsa/Poldarskaya Formation

 Russia
( Orenburg Oblast
 Vologda Oblast)

A member of Eurynotoidiformes. The type species is "Isadia" opokiensis Minikh & Andrushkevich (2017). Published online in 2023, but the issue date is listed as December 2022.[100]

Waitakia beelzebub[65]

Sp. nov

Valid

Lin & Nolf

Eocene

Piney Point Formation

 United States
( Alabama
 Virginia)

A member of the subfamily Hemerocoetinae.

Xinjiangodus[124]

Gen. et sp. nov

Junior homonym

Zhou et al.

Late Cretaceous

Donggou Formation

 China

A member of the family Pycnodontidae. Genus includes new species X. gyrodoides. The generic name is preoccupied by Xinjiangodus Yue & Gao (1992).

Ray-finned fish research

  • A new database of the occurrences of Paleozoic ray-finned fishes is presented by Henderson et al. (2022), who evaluate the impact of fossil record biases, as well as taxonomic and phylogenetic issues, on the knowledge of the early evolution of ray-finned fishes;[125] subsequently Henderson, Dunne & Giles (2022) use this database to study patterns of diversity of ray-finned fishes through the Paleozoic, taking the extent and impact of sampling biases into account.[126]
  • A novel mode of fang accommodation, with teeth of the lower jaw inserting into fenestrae of the upper jaw, is reported in Brazilichthys macrognathus by Figueroa & Andrews (2022).[127]
  • Redescription and a study on the affinities of Toyemia is published by Bakaev & Kogan (2022).[128]
  • Redescription of the anatomy and a study on the affinities of Brachydegma caelatum is published by Argyriou, Giles & Friedman (2022).[129]
  • Osteoderms providing evidence of presence of large sturgeons (within the upper size bracket for Acipenseridae) in early-middle Paleocene freshwater ecosystems of western North America are described from the Fort Union Formation (Montana, United States) by Brownstein (2022).[130]
  • Fossil material of a member or a relative of the genus Eomesodon, representing the oldest record of pycnodonts from East Gondwana reported to date, is described from the Middle Jurassic (Bathonian) Jaisalmer Formation (Rajasthan, India) by Kumar et al. (2022).[131]
  • A study on the tooth replacement pattern and implantation in Serrasalmimus secans is published by Matsui & Kimura (2022), who interpret their findings as indicating that serrasalmimid pycnodont fish independently acquired a vertical replacement in true thecodont implantation, i.e. a characteristic tooth replacement pattern of mammals.[132]
  • A study on the phylogenetic relationships and evolutionary history of extant and extinct gars is published by Brownstein et al. (2022).[133]
  • Redescription and a study on the affinities of Saurostomus esocinus is published by Cooper & Maxwell (2022), who interpret this taxon as the basalmost transitional member of the suspension-feeding clade of pachycormids.[134]
  • A study on bone repair in response to damage in Leedsichthys problematicus is published by Johanson et al. (2022).[135]
  • Redescription and a study on the affinities of Thaumaturus intermedius is published by Micklich & Arratia (2022).[136]
  • Redescription of "Diplomystus" solignaci is published by Marramà, Khalloufi & Carnevale (2022), who interpret this fish as a paraclupeid ellimmichthyiform, and transfer it to the genus Paraclupea.[137]
  • A study on cranial morphological features that diagnose known families of catfishes, and on their implications for the knowledge of the affinities of catfishes from the Paleogene of Africa, is published by Murray & Holmes (2022), who reassess the familial placement of the Paleogene African catfishes and assign Eomacrones wilsoni to the family Bagridae sensu stricto.[138]
  • Description of new fossil material of Enchodus from the Cenomanian of Ukraine, and a revision of earlier records of Enchodus from Ukraine, is published by Kovalchuk, Barkaszi & Anfimova (2022).[139]
  • Redescription and a study on the phylogenetic affinities of Protosyngnathus sumatrensis is published by Murray (2022).[140]
  • A study on the phylogenetic affinities of fossil gobioids is published by Gierl et al. (2022).[141]
  • New specimen of Mene rhombea with extensive soft tissue preservation and striking colour patterning is described from the Eocene (Ypresian) Monte Bolca Lagerstätte (Italy) by Rossi et al. (2022).[142]
  • A study on patterns of body size evolution of tetraodontiforms in relation to paleoclimate events is published by Troyer et al. (2022).[143]
  • Přikryl et al. (2022) describe a new specimen of Archaeotetraodon winterbottomi from the Oligocene Rybnytsia Member of the Menilite Series (Ukraine), providing new information on the anatomy of this tetraodontid.[144]

Lobe-finned fishes

Name Novelty Status Authors Age Type locality Location Notes Images

Ceratodus guanganensis[145]

Sp. nov

Valid

Wang et al.

Late Jurassic

Shaximiao Formation

 China

Announced in 2021; the final version of the article naming it was published in 2022.

Ceratodus shishkini[146]

Sp. nov

Valid

Minikh

Triassic

 Russia
( Orenburg Oblast)

Published online in 2023, but the issue date is listed as December 2022.[146]

Dianodipterus[147]

Gen. et sp. nov

Valid

Luo et al.

Devonian (Eifelian)

Qujing Formation

 China

A lungfish. The type species is D. huizeensis.

Diplurus enigmaticus[148]

Sp. nov

Brownstein & Bissell

Triassic

 United States
( New Jersey)

A coelacanth.

Langlieria smalingi[149]

Sp. nov

Valid

Downs & Daeschler

Devonian (Frasnian)

Catskill Formation

 United States
( Pennsylvania)

A member of the family Tristichopteridae.

Libys callolepis[150]

Sp. nov

Valid

Ferrante, Menkveld-Gfeller & Cavin

Early Jurassic (Toarcian)

Stadelgraben Formation

  Switzerland

A coelacanth belonging to the family Latimeriidae.

Qikiqtania[151]

Gen. et sp. nov

Valid

Stewart et al.

Devonian (Frasnian)

Fram Formation

 Canada
( Nunavut)

An elpistostegalian. The type species is Q. wakei.

Rhizodus serpukhovensis[152]

Sp. nov

Valid

Smirnova

Carboniferous (Serpukhovian)

 Russia
( Moscow Oblast)

Rinconodus[153]

Gen. et sp. nov

Valid

Panzeri et al.

Late Cretaceous (Santonian)

Bajo de la Carpa Formation

 Argentina

A lungfish belonging to the family Ceratodontidae. The type species is R. salvadori.

Lobe-finned fish research

Other

Name Novelty Status Authors Age Type locality Location Notes Images

Permodontodus[164]

Gen. et sp. nov

Valid

McMenamin

Permian (Kungurian)

Wellington Formation

 United States
( Oklahoma)

A bony fish of uncertain affinities, possibly a lobe-finned fish. Genus includes new species P. waurikensis.

Qianodus[165]

Gen. et sp. nov

Valid

Andreev, Sansom, Li, Zhao & Zhu in Andreev et al.

Silurian (probably Aeronian)

Rongxi Formation

 China

An early jawed vertebrate, likely a stem-chondrichthyan. The type species is Q. duplicis.

Shenacanthus[13]

Gen. et sp. nov

Valid

Zhu, Li, Ahlberg & Zhu in Zhu et al.

Silurian (Telychian)

Huixingshao Formation

 China

A stem-chondrichthyan. The type species is S. vermiformis.

General research

  • A study on the evolution of swimming speed in early vertebrates, inferred from caudal fin morphology of Paleozoic cyclostomes (Myxinidae and Petromyzontidae), jawless stem gnathostomes (Conodonta, Anaspida, Pteraspidomorphi, Thelodonti and Osteostraci) and placoderms, is published by Ferrón & Donoghue (2022), who interpret their findings as indicating that microsquamous taxa (thelodonts and anaspids) had higher swimming capabilities than vertebrates with rigid bony carapaces (including placoderms), that demonstrating that the rise of active nektonic vertebrates long-predated the Devonian.[166]
  • A study on the morphological similarities of Silurian and Devonian jawless and jawed vertebrates, aiming to determine which groups were most and least likely to have competed (and whether competition with jawed vertebrates was likely to cause the extinction of the majority of jawless vertebrates), is published by Scott & Anderson (2022), who don't find support for overall competitive exclusion of jawless vertebrates by jawed vertebrates.[167]
  • A study on the evolution of the vertebrate spiracular region from jawless vertebrates to tetrapods is published by Gai et al. (2022).[168]
  • A study on the mandibular morphology of Silurian and Devonian jawed vertebrates, and on the functional capabilities of their jaws, is published by Deakin et al. (2022).[169]
  • Description of the ichthyolith assemblage from the Upper Triassic Luning Formation (Nevada, United States), increasing known diversity of marine vertebrates in the western United States in the Late Triassic from four to at least 14 genera, is published by Tackett, Zierer & Clement (2022), who report evidence of the presence of taxa that were previously known only from Europe during the Late Triassic.[170]
  • Revision of the marine fish fauna from the Upper Cretaceous (Campanian) Rybushka Formation (Saratov Oblast, Russia) is published by Ebersole et al. (2022).[171]
  • A study aiming to reconstruct the fish community and oceanographic conditions off the coast of
    last interglacial, based on data from sediments from the northern Humboldt Current system, is published by Salvatteci et al. (2022).[172]
  • Review of the fossil material providing information on the reproduction of extinct fishes is published by Capasso (2022), who names new ootaxa
    Heath Formation, Montana, United States), Palaeochimaerootheca browni (egg capsule of chimaerids from the Pennsylvanian Cherokee Shale, Missouri, and Mazon Creek fossil beds, Illinois, United States), and Parascylliootheca libanica (egg capsule of parascylliids from the Cretaceous Sannine Formation, Lebanon).[173]

References

  1. ^ .
  2. ^ .
  3. .
  4. .
  5. .
  6. .
  7. .
  8. .
  9. .
  10. .
  11. .
  12. .
  13. ^ .
  14. .
  15. .
  16. .
  17. .
  18. .
  19. .
  20. .
  21. .
  22. .
  23. .
  24. ^ .
  25. .
  26. .
  27. ^ .
  28. .
  29. ^ .
  30. .
  31. .
  32. .
  33. .
  34. .
  35. .
  36. .
  37. .
  38. .
  39. .
  40. .
  41. .
  42. .
  43. .
  44. .
  45. .
  46. .
  47. .
  48. .
  49. .
  50. .
  51. .
  52. .
  53. .
  54. .
  55. .
  56. .
  57. .
  58. .
  59. .
  60. .
  61. .
  62. ^ .
  63. ^ .
  64. ^ .
  65. ^ .
  66. ^ .
  67. ^ .
  68. .
  69. .
  70. ^ .
  71. ^ a b c d e f g h i j k l m n o p q r s Van Hinsbergh, V.; Hoedemakers, K. (2022). "Zanclean and Piacenzian otolith-based fish faunas of Estepona (Málaga, Spain)". Cainozoic Research. 22 (2): 241–352.
  72. ^ .
  73. ^ .
  74. ^ Bannikov, A. F.; Zorzin, R. (2022). "A new species of the incertae sedis percoid fish †Bradyurus (Perciformes s.l.) from the Eocene of Bolca in northern Italy" (PDF). Studi e ricerche sui giacimenti terziari di Bolca, XXII - Miscellanea Paleontologica. 19: 45–53.
  75. ^ .
  76. .
  77. ^ .
  78. ^ .
  79. ^ Taverne, L. (2022). "The Pantodontidae (Teleostei, Osteoglossomorpha) from the marine Cenomanian (Upper Cretaceous) of Lebanon. 4°. Capassopiscis pankowskii gen. and sp. nov" (PDF). Geo-Eco-Trop. 46 (1): 149–158.
  80. ^
    S2CID 251416297
    .
  81. ^ Plax, D. P. (2022). "A new species of the ray-finned fish (Osteichthyes, Actinopterygii) from the Upper Emsian and lowermost Eifelian deposits of Belarus". Лiтасфера. 1 (56): 30–39.
  82. S2CID 247537869
    .
  83. .
  84. .
  85. .
  86. .
  87. .
  88. .
  89. ^ .
  90. .
  91. .
  92. .
  93. .
  94. ^ .
  95. ^ Schwarzhans, W.; Radwańska, U. (2022). "A review of lanternfish otoliths (Myctophidae, Teleostei) of the early Badenian (Langhian, middle Miocene) from Bęczyn, southern Poland". Cainozoic Research. 22 (1): 9–24.
  96. S2CID 247834413
    .
  97. .
  98. ^ .
  99. .
  100. ^ .
  101. .
  102. .
  103. .
  104. .
  105. .
  106. .
  107. .
  108. .
  109. ^ Bannikov, A. F.; Zorzin, R. (2022). "†Pavarottia astescalpone sp. nov., a new percoid fish (Perciformes s.l.) from the Eocene of Bolca, northern Italy, representing a new extinct family" (PDF). Studi e ricerche sui giacimenti terziari di Bolca, XXII - Miscellanea Paleontologica. 19: 35–44.
  110. S2CID 250224637
    .
  111. .
  112. .
  113. .
  114. .
  115. .
  116. .
  117. .
  118. .
  119. .
  120. .
  121. .
  122. .
  123. .
  124. .
  125. .
  126. .
  127. .
  128. .
  129. .
  130. .
  131. .
  132. .
  133. .
  134. .
  135. .
  136. .
  137. .
  138. .
  139. .
  140. .
  141. .
  142. .
  143. .
  144. .
  145. .
  146. ^ .
  147. .
  148. .
  149. .
  150. .
  151. .
  152. .
  153. .
  154. .
  155. .
  156. .
  157. .
  158. .
  159. .
  160. .
  161. .
  162. .
  163. .
  164. .
  165. .
  166. .
  167. .
  168. .
  169. .
  170. .
  171. .
  172. .
  173. ^ Capasso, L. (2022). "Palaeophysiology of reproduction in fossil fishes: an overview and new insights, with the description of four new ichnotaxa" (PDF). Bollettino del Museo Civico di Storia Naturale di Verona. 46: 23–74.