Muscarinic acetylcholine receptor M2

Source: Wikipedia, the free encyclopedia.
CHRM2
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Ensembl
UniProt
RefSeq (mRNA)

NM_203491

RefSeq (protein)

NP_987076

Location (UCSC)Chr 7: 136.87 – 137.02 MbChr 6: 36.37 – 36.51 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

The muscarinic acetylcholine receptor M2, also known as the cholinergic receptor, muscarinic 2, is a muscarinic acetylcholine receptor that in humans is encoded by the CHRM2 gene.[5] Multiple alternatively spliced transcript variants have been described for this gene.[5] It is Gi-coupled, reducing intracellular levels of cAMP.

Function

Heart

The M2 muscarinic receptors are located in the heart, where they act to slow the

ventricular
muscle, slightly decreasing force.

Airway smooth muscle

Both M2 and M3 muscarinic receptors are expressed in the smooth muscles of the airway, with the majority of the receptors being the M2 type. Activation of the M2 receptors, which are coupled to Gi, inhibits the β-adrenergic mediated relaxation of the airway smooth muscle. Synergistically, activation of the M3 receptors, which couple to Gq, stimulates contraction of the airway smooth muscle.[6]

IQ

A Dutch family study found that there is "a highly significant association" between the CHRM2 gene and intelligence as measured by the Wechsler Adult Intelligence Scale-Revised.[7] A similar association was found independently in the Minnesota Twin and Family Study.[8][9]

However, a larger 2009 study attempting to replicate this claim instead found no significant association between the CHRM2 gene and intelligence.[10]

Olfactory behavior

Mediating

olfactory guided behaviors (e.g. odor discrimination, aggression, mating).[11]

Mechanism of action

M2 muscarinic receptors act via a Gi type receptor, which causes a decrease in cAMP in the cell, generally leading to inhibitory-type effects. They appear to generally serve as autoreceptors.[12]

In addition, they modulate

G protein-coupled inwardly-rectifying potassium channels.[13][14]
In the heart, this contributes to a decreased heart rate. They do so by the Gβγ subunit of the G protein; Gβγ shifts the open probability of K+ channels in the membrane of the cardiac pacemaker cells, which causes an outward current of potassium, effectively hyperpolarizing the membrane, which slows down the heart rate.

Ligands

Few highly selective M2 agonists are available at present, although there are several non-selective muscarinic agonists that stimulate M2, and a number of selective M2 antagonists are available.

Agonists

Antagonists

See also

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000181072Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000045613Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ a b "Entrez Gene: CHRM2 cholinergic receptor, muscarinic 2".
  6. PMID 10069508
    .
  7. .
  8. .
  9. .
  10. .
  11. .
  12. .
  13. ^ .
  14. .
  15. .
  16. .
  17. .
  18. .
  19. .
  20. ^ Edwards Pharmaceuticals, Inc., Belcher Pharmaceuticals, Inc. (May 2010), "ED-SPAZ- hyoscyamine sulfate tablet, orally disintegrating", DailyMed, U.S. National Library of Medicine, retrieved January 13, 2013
  21. PMID 3436364
    .

Further reading

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.