Estriol (medication)

Source: Wikipedia, the free encyclopedia.
Estriol (medication)
Drug classEstrogen
ATC code
Legal status
Legal status
  • In general: ℞ (Prescription only)
conjugates)[4][5]
Identifiers
  • (8R,9S,13S,14S,16R,17R)-13-methyl-6,7,8,9,11,12,14,15,16,17-decahydrocyclopenta[a]phenanthrene-3,16,17-triol
JSmol)
Melting point82 to 86 °C (180 to 187 °F) (experimental)
Solubility in water0.119 mg/mL (20 °C)
  • Oc1cc3c(cc1)[C@H]2CC[C@@]4([C@@H](O)[C@H](O)C[C@H]4[C@@H]2CC3)C
  • InChI=1S/C18H24O3/c1-18-7-6-13-12-5-3-11(19)8-10(12)2-4-14(13)15(18)9-16(20)17(18)21/h3,5,8,13-17,19-21H,2,4,6-7,9H2,1H3/t13-,14-,15+,16-,17+,18+/m1/s1 checkY
  • Key:PROQIPRRNZUXQM-ZXXIGWHRSA-N checkY
  (verify)

Estriol (E3), sold under the brand name Ovestin among others, is an

applied in the vagina, and by injection into muscle.[4][5][6]

Estriol is well-

endogenous estradiol.[4] It is an atypical and relatively weak estrogen, with much lower potency than estradiol.[4][6][19] When present continuously at adequate concentrations however, estriol produces full estrogenic effects similarly to estradiol.[20][21]

Estriol was first discovered in 1930,

Estriol esters such as estriol succinate are also used.[4][18][3] Although it is less commonly employed than other estrogens like estradiol and conjugated estrogens, estriol is widely available for medical use in Europe and elsewhere throughout the world.[4][2][3][6]

Medical uses

Estriol is used in

lactobacilli as a dual estrogen and probiotic has been marketed for the treatment of vaginal atrophy and urinary tract infections.[27]

Estrogen dosages for menopausal hormone therapy
Route/form Estrogen Low Standard High
Oral Estradiol 0.5–1 mg/day 1–2 mg/day 2–4 mg/day
Estradiol valerate 0.5–1 mg/day 1–2 mg/day 2–4 mg/day
Estradiol acetate 0.45–0.9 mg/day 0.9–1.8 mg/day 1.8–3.6 mg/day
Conjugated estrogens 0.3–0.45 mg/day 0.625 mg/day 0.9–1.25 mg/day
Esterified estrogens 0.3–0.45 mg/day 0.625 mg/day 0.9–1.25 mg/day
Estropipate 0.75 mg/day 1.5 mg/day 3 mg/day
Estriol 1–2 mg/day 2–4 mg/day 4–8 mg/day
Ethinylestradiola 2.5–10 μg/day 5–20 μg/day
Nasal spray Estradiol 150 μg/day 300 μg/day 600 μg/day
Transdermal patch Estradiol 25 μg/dayb 50 μg/dayb 100 μg/dayb
Transdermal gel
Estradiol 0.5 mg/day 1–1.5 mg/day 2–3 mg/day
Vaginal
Estradiol 25 μg/day
Estriol 30 μg/day 0.5 mg 2x/week 0.5 mg/day
SC injection
Estradiol valerate 4 mg 1x/4 weeks
Estradiol cypionate 1 mg 1x/3–4 weeks 3 mg 1x/3–4 weeks 5 mg 1x/3–4 weeks
Estradiol benzoate 0.5 mg 1x/week 1 mg 1x/week 1.5 mg 1x/week
SC implant Estradiol 25 mg 1x/6 months 50 mg 1x/6 months 100 mg 1x/6 months
Footnotes: a = No longer used or recommended, due to health concerns. b = As a single patch applied once or twice per week (worn for 3–4 days or 7 days), depending on the formulation. Note: Dosages are not necessarily equivalent. Sources: See template.

Available forms (except USA)

Estriol is available in

Estriol was originally marketed in the 1930s in the form of oral capsules containing 0.06, 0.12, or 0.24 mg estriol under the brand names Theelol (Parke-Davis) and Estriol (Lilly, Abbott).[30][31][32][33][34] Subsequently, many decades later, oral tablets containing 0.35, 1, or 2 mg estriol were introduced under brand names such as Gynäsan, Hormomed, Ovestin, and Ovo-Vinces.[35]

Contraindications

General contraindications of estrogens include breast cancer, endometrial cancer, and others.[19] In animals, estriol is contraindicated during pregnancy and in ferrets.[17]

Side effects

Estriol is well-

itching) and discharge may occur.[12] Estriol may produce endometrial hyperplasia similarly to estradiol and other estrogens, and hence should be combined with a progestogen in women with intact uteruses to prevent this risk.[36][4] However, it appears that typical clinical dosages of vaginal estriol are not associated with an important risk of endometrial proliferation or hyperplasia.[12][26] As such, combination with a progestogen may not be needed in the case of vaginal estriol.[12][26] Some studies suggest that this may also be true for oral estriol.[18] However, dosage and frequency of administration, as well as meal consumption, may be determining factors as to whether or not estriol produces endometrial proliferation.[4]

Overdose

Estrogens and other

overdose.[citation needed] Estriol has been assessed in single oral doses of up to 75 mg.[37][38] General symptoms of estrogen overdose in humans may include nausea, vomiting, vaginal bleeding, and reversible feminization.[39][16] While there are no known studies describing the acute toxicity of estrogen overdose in dogs, this species is known to be more sensitive to the toxic effects of estrogens than humans and other animals.[16] The most serious short-term adverse effect of estrogens in dogs is bone marrow suppression and consequent pancytopenia, which can be life-threatening.[16]

Interactions

Interactions with estriol might be expected to be similar to those of estradiol.[40] No interactions with estriol have been reported in animals.[17] However, it should not be used in combination with other drugs that suppress bone marrow production in dogs.[17]

Pharmacology

Pharmacodynamics

Estriol is an estrogen, or an

G protein-coupled estrogen receptor (GPER), a membrane estrogen receptor (mER), at high concentrations (~1,000–10,000 μM).[43][44][41][45] This is in contrast to estradiol, which is an agonist of this receptor.[44][41][45] Like other estrogens, estriol does not importantly interact with other steroid hormone receptors.[46][47][48][49][50]

Estriol is a much less

endometrial proliferation or increase the risk of endometrial hyperplasia, and some studies have found this to be the case for oral estriol as well.[4][18][52] On the other hand, it appears that estriol may be able to stimulate the growth of active breast cancer.[18][12] In rodents, estriol induces mammary gland development similar to that with estrone.[53] By the oral route in women, estriol has approximately 30% of the potency of estradiol in terms of hot flashes relief and suppression of follicle-stimulating hormone secretion, and about 20% of the potency of estradiol on stimulation of liver production of high-density lipoprotein (HDL) cholesterol.[4] A study of ovulation inhibition by estrogens in women found that prevention of ovulation occurred with 5 mg/day oral estriol in only 1 of 7 cycles.[54][55] Due to its differing effects from those of estradiol, estriol may be considered a safer estrogen in certain regards.[12]

subcutaneous pellets of estriol are used instead.[56][57]

The weak and atypical estrogenicity of estriol is thought to be related to its short

enterohepatic recycling and resurgences in estriol levels.[4] As such, if avoidance of endometrial hyperplasia or other full estrogenic effects is intended, it may be preferable to take estriol in a single dose, as low as possible, once per day at night before bedtime.[4][52]

Although estriol is an estrogen, it has also been reported to have mixed

agonist–antagonist or partial agonist activity at the ERs.[4][21][19] On its own, it is said to be weakly estrogenic, but in the presence of estradiol, it has been found to be antiestrogenic.[4][44] However, this is again due to the fact that estriol is a "short-acting" estrogen.[21] If estriol is present continuously with estradiol, it shows no antagonism of estradiol.[21] The co-administration of estriol with estradiol has been found not to influence the effects of the latter in women, including neither enhancing nor antagonizing the effects of estradiol.[52][60]

Affinities of estrogen receptor ligands for the ERα and ERβ
Ligand Other names
Relative binding affinities
(RBA, %)a
Absolute binding affinities
(Ki, nM)a
Action
ERα
ERβ
ERα
ERβ
Estradiol E2; 17β-Estradiol 100 100 0.115 (0.04–0.24) 0.15 (0.10–2.08) Estrogen
Estrone E1; 17-Ketoestradiol 16.39 (0.7–60) 6.5 (1.36–52) 0.445 (0.3–1.01) 1.75 (0.35–9.24) Estrogen
Estriol E3; 16α-OH-17β-E2 12.65 (4.03–56) 26 (14.0–44.6) 0.45 (0.35–1.4) 0.7 (0.63–0.7) Estrogen
Estetrol E4; 15α,16α-Di-OH-17β-E2 4.0 3.0 4.9 19 Estrogen
Alfatradiol 17α-Estradiol 20.5 (7–80.1) 8.195 (2–42) 0.2–0.52 0.43–1.2 Metabolite
16-Epiestriol
16β-Hydroxy-17β-estradiol 7.795 (4.94–63) 50 ? ? Metabolite
17-Epiestriol
16α-Hydroxy-17α-estradiol 55.45 (29–103) 79–80 ? ? Metabolite
16,17-Epiestriol
16β-Hydroxy-17α-estradiol 1.0 13 ? ? Metabolite
2-Hydroxyestradiol 2-OH-E2 22 (7–81) 11–35 2.5 1.3 Metabolite
2-Methoxyestradiol 2-MeO-E2 0.0027–2.0 1.0 ? ? Metabolite
4-Hydroxyestradiol 4-OH-E2 13 (8–70) 7–56 1.0 1.9 Metabolite
4-Methoxyestradiol 4-MeO-E2 2.0 1.0 ? ? Metabolite
2-Hydroxyestrone 2-OH-E1 2.0–4.0 0.2–0.4 ? ? Metabolite
2-Methoxyestrone 2-MeO-E1 <0.001–<1 <1 ? ? Metabolite
4-Hydroxyestrone 4-OH-E1 1.0–2.0 1.0 ? ? Metabolite
4-Methoxyestrone 4-MeO-E1 <1 <1 ? ? Metabolite
16α-Hydroxyestrone 16α-OH-E1; 17-Ketoestriol 2.0–6.5 35 ? ? Metabolite
2-Hydroxyestriol 2-OH-E3 2.0 1.0 ? ? Metabolite
4-Methoxyestriol 4-MeO-E3 1.0 1.0 ? ? Metabolite
Estradiol sulfate E2S; Estradiol 3-sulfate <1 <1 ? ? Metabolite
Estradiol disulfate Estradiol 3,17β-disulfate 0.0004 ? ? ? Metabolite
Estradiol 3-glucuronide E2-3G 0.0079 ? ? ? Metabolite
Estradiol 17β-glucuronide
E2-17G 0.0015 ? ? ? Metabolite
Estradiol 3-gluc. 17β-sulfate E2-3G-17S 0.0001 ? ? ? Metabolite
Estrone sulfate E1S; Estrone 3-sulfate <1 <1 >10 >10 Metabolite
Estradiol benzoate EB; Estradiol 3-benzoate 10 ? ? ? Estrogen
Estradiol 17β-benzoate E2-17B 11.3 32.6 ? ? Estrogen
Estrone methyl ether Estrone 3-methyl ether 0.145 ? ? ? Estrogen
ent-Estradiol 1-Estradiol 1.31–12.34 9.44–80.07 ? ? Estrogen
Equilin 7-Dehydroestrone 13 (4.0–28.9) 13.0–49 0.79 0.36 Estrogen
Equilenin 6,8-Didehydroestrone 2.0–15 7.0–20 0.64 0.62 Estrogen
17β-Dihydroequilin 7-Dehydro-17β-estradiol 7.9–113 7.9–108 0.09 0.17 Estrogen
17α-Dihydroequilin 7-Dehydro-17α-estradiol 18.6 (18–41) 14–32 0.24 0.57 Estrogen
17β-Dihydroequilenin 6,8-Didehydro-17β-estradiol 35–68 90–100 0.15 0.20 Estrogen
17α-Dihydroequilenin 6,8-Didehydro-17α-estradiol 20 49 0.50 0.37 Estrogen
Δ8-Estradiol 8,9-Dehydro-17β-estradiol 68 72 0.15 0.25 Estrogen
Δ8-Estrone 8,9-Dehydroestrone 19 32 0.52 0.57 Estrogen
Ethinylestradiol EE; 17α-Ethynyl-17β-E2 120.9 (68.8–480) 44.4 (2.0–144) 0.02–0.05 0.29–0.81 Estrogen
Mestranol EE 3-methyl ether ? 2.5 ? ? Estrogen
Moxestrol RU-2858; 11β-Methoxy-EE 35–43 5–20 0.5 2.6 Estrogen
Methylestradiol 17α-Methyl-17β-estradiol 70 44 ? ? Estrogen
Diethylstilbestrol DES; Stilbestrol 129.5 (89.1–468) 219.63 (61.2–295) 0.04 0.05 Estrogen
Hexestrol Dihydrodiethylstilbestrol 153.6 (31–302) 60–234 0.06 0.06 Estrogen
Dienestrol Dehydrostilbestrol 37 (20.4–223) 56–404 0.05 0.03 Estrogen
Benzestrol (B2) 114 ? ? ? Estrogen
Chlorotrianisene TACE 1.74 ? 15.30 ? Estrogen
Triphenylethylene TPE 0.074 ? ? ? Estrogen
Triphenylbromoethylene TPBE 2.69 ? ? ? Estrogen
Tamoxifen ICI-46,474 3 (0.1–47) 3.33 (0.28–6) 3.4–9.69 2.5 SERM
Afimoxifene 4-Hydroxytamoxifen; 4-OHT 100.1 (1.7–257) 10 (0.98–339) 2.3 (0.1–3.61) 0.04–4.8 SERM
Toremifene 4-Chlorotamoxifen; 4-CT ? ? 7.14–20.3 15.4 SERM
Clomifene MRL-41 25 (19.2–37.2) 12 0.9 1.2 SERM
Cyclofenil F-6066; Sexovid 151–152 243 ? ? SERM
Nafoxidine U-11,000A 30.9–44 16 0.3 0.8 SERM
Raloxifene 41.2 (7.8–69) 5.34 (0.54–16) 0.188–0.52 20.2 SERM
Arzoxifene LY-353,381 ? ? 0.179 ? SERM
Lasofoxifene CP-336,156 10.2–166 19.0 0.229 ? SERM
Ormeloxifene Centchroman ? ? 0.313 ? SERM
Levormeloxifene 6720-CDRI; NNC-460,020 1.55 1.88 ? ? SERM
Ospemifene Deaminohydroxytoremifene 0.82–2.63 0.59–1.22 ? ? SERM
Bazedoxifene ? ? 0.053 ? SERM
Etacstil GW-5638 4.30 11.5 ? ? SERM
ICI-164,384
63.5 (3.70–97.7) 166 0.2 0.08 Antiestrogen
Fulvestrant ICI-182,780 43.5 (9.4–325) 21.65 (2.05–40.5) 0.42 1.3 Antiestrogen
Propylpyrazoletriol PPT 49 (10.0–89.1) 0.12 0.40 92.8 ERα agonist
16α-LE2 16α-Lactone-17β-estradiol 14.6–57 0.089 0.27 131 ERα agonist
16α-Iodo-E2 16α-Iodo-17β-estradiol 30.2 2.30 ? ? ERα agonist
Methylpiperidinopyrazole MPP 11 0.05 ? ? ERα antagonist
Diarylpropionitrile DPN 0.12–0.25 6.6–18 32.4 1.7 ERβ agonist
8β-VE2 8β-Vinyl-17β-estradiol 0.35 22.0–83 12.9 0.50 ERβ agonist
Prinaberel ERB-041; WAY-202,041 0.27 67–72 ? ? ERβ agonist
ERB-196 WAY-202,196 ? 180 ? ? ERβ agonist
Erteberel SERBA-1; LY-500,307 ? ? 2.68 0.19 ERβ agonist
SERBA-2 ? ? 14.5 1.54 ERβ agonist
Coumestrol 9.225 (0.0117–94) 64.125 (0.41–185) 0.14–80.0 0.07–27.0 Xenoestrogen
Genistein 0.445 (0.0012–16) 33.42 (0.86–87) 2.6–126 0.3–12.8 Xenoestrogen
Equol 0.2–0.287 0.85 (0.10–2.85) ? ? Xenoestrogen
Daidzein 0.07 (0.0018–9.3) 0.7865 (0.04–17.1) 2.0 85.3 Xenoestrogen
Biochanin A 0.04 (0.022–0.15) 0.6225 (0.010–1.2) 174 8.9 Xenoestrogen
Kaempferol 0.07 (0.029–0.10) 2.2 (0.002–3.00) ? ? Xenoestrogen
Naringenin 0.0054 (<0.001–0.01) 0.15 (0.11–0.33) ? ? Xenoestrogen
8-Prenylnaringenin 8-PN 4.4 ? ? ? Xenoestrogen
Quercetin <0.001–0.01 0.002–0.040 ? ? Xenoestrogen
Ipriflavone <0.01 <0.01 ? ? Xenoestrogen
Miroestrol 0.39 ? ? ? Xenoestrogen
Deoxymiroestrol
2.0 ? ? ? Xenoestrogen
β-Sitosterol
<0.001–0.0875 <0.001–0.016 ? ? Xenoestrogen
Resveratrol <0.001–0.0032 ? ? ? Xenoestrogen
α-Zearalenol 48 (13–52.5) ? ? ? Xenoestrogen
β-Zearalenol 0.6 (0.032–13) ? ? ? Xenoestrogen
Zeranol α-Zearalanol 48–111 ? ? ? Xenoestrogen
Taleranol β-Zearalanol 16 (13–17.8) 14 0.8 0.9 Xenoestrogen
Zearalenone ZEN 7.68 (2.04–28) 9.45 (2.43–31.5) ? ? Xenoestrogen
Zearalanone ZAN 0.51 ? ? ? Xenoestrogen
Bisphenol A BPA 0.0315 (0.008–1.0) 0.135 (0.002–4.23) 195 35 Xenoestrogen
Endosulfan EDS <0.001–<0.01 <0.01 ? ? Xenoestrogen
Kepone
Chlordecone 0.0069–0.2 ? ? ? Xenoestrogen
o,p'-DDT
0.0073–0.4 ? ? ? Xenoestrogen
p,p'-DDT
0.03 ? ? ? Xenoestrogen
Methoxychlor p,p'-Dimethoxy-DDT 0.01 (<0.001–0.02) 0.01–0.13 ? ? Xenoestrogen
HPTE Hydroxychlor; p,p'-OH-DDT 1.2–1.7 ? ? ? Xenoestrogen
Testosterone T; 4-Androstenolone <0.0001–<0.01 <0.002–0.040 >5000 >5000 Androgen
Dihydrotestosterone DHT; 5α-Androstanolone 0.01 (<0.001–0.05) 0.0059–0.17 221–>5000 73–1688 Androgen
Nandrolone 19-Nortestosterone; 19-NT 0.01 0.23 765 53 Androgen
Dehydroepiandrosterone DHEA; Prasterone 0.038 (<0.001–0.04) 0.019–0.07 245–1053 163–515 Androgen
5-Androstenediol
A5; Androstenediol 6 17 3.6 0.9 Androgen
4-Androstenediol 0.5 0.6 23 19 Androgen
4-Androstenedione
A4; Androstenedione <0.01 <0.01 >10000 >10000 Androgen
3α-Androstanediol 3α-Adiol 0.07 0.3 260 48 Androgen
3β-Androstanediol 3β-Adiol 3 7 6 2 Androgen
Androstanedione 5α-Androstanedione <0.01 <0.01 >10000 >10000 Androgen
Etiocholanedione 5β-Androstanedione <0.01 <0.01 >10000 >10000 Androgen
Methyltestosterone 17α-Methyltestosterone <0.0001 ? ? ? Androgen
Ethinyl-3α-androstanediol
17α-Ethynyl-3α-adiol 4.0 <0.07 ? ? Estrogen
Ethinyl-3β-androstanediol
17α-Ethynyl-3β-adiol 50 5.6 ? ? Estrogen
Progesterone P4; 4-Pregnenedione <0.001–0.6 <0.001–0.010 ? ? Progestogen
Norethisterone NET; 17α-Ethynyl-19-NT 0.085 (0.0015–<0.1) 0.1 (0.01–0.3) 152 1084 Progestogen
Norethynodrel
5(10)-Norethisterone 0.5 (0.3–0.7) <0.1–0.22 14 53 Progestogen
Tibolone 7α-Methylnorethynodrel 0.5 (0.45–2.0) 0.2–0.076 ? ? Progestogen
Δ4-Tibolone 7α-Methylnorethisterone 0.069–<0.1 0.027–<0.1 ? ? Progestogen
3α-Hydroxytibolone 2.5 (1.06–5.0) 0.6–0.8 ? ? Progestogen
3β-Hydroxytibolone 1.6 (0.75–1.9) 0.070–0.1 ? ? Progestogen
Footnotes: a = (1)
ERβ
proteins (except the ERβ values from Kuiper et al. (1997), which are rat ERβ). Sources: See template page.
Relative affinities of estrogens for steroid hormone receptors and blood proteins
Estrogen
Relative binding affinities
(%)
ERTooltip Estrogen receptor ARTooltip Androgen receptor PRTooltip Progesterone receptor GRTooltip Glucocorticoid receptor MRTooltip Mineralocorticoid receptor SHBGTooltip Sex hormone-binding globulin
CBG
Tooltip Corticosteroid binding globulin
Estradiol 100 7.9 2.6 0.6 0.13 8.7–12 <0.1
Estradiol benzoate ? ? ? ? ? <0.1–0.16 <0.1
Estradiol valerate 2 ? ? ? ? ? ?
Estrone 11–35 <1 <1 <1 <1 2.7 <0.1
Estrone sulfate 2 2 ? ? ? ? ?
Estriol 10–15 <1 <1 <1 <1 <0.1 <0.1
Equilin 40 ? ? ? ? ? 0
Alfatradiol 15 <1 <1 <1 <1 ? ?
Epiestriol 20 <1 <1 <1 <1 ? ?
Ethinylestradiol 100–112 1–3 15–25 1–3 <1 0.18 <0.1
Mestranol 1 ? ? ? ? <0.1 <0.1
Methylestradiol 67 1–3 3–25 1–3 <1 ? ?
Moxestrol 12 <0.1 0.8 3.2 <0.1 <0.2 <0.1
Diethylstilbestrol ? ? ? ? ? <0.1 <0.1
Notes: Reference
CBG
Tooltip Corticosteroid-binding globulin. Sources: See template.
Selected biological properties of endogenous estrogens in rats
Estrogen
RBA
Tooltip relative binding affinity (%)
Uterine weight (%)
Uterotrophy
LHTooltip Luteinizing hormone levels (%)
RBA
Tooltip relative binding affinity (%)
Control 100 100
Estradiol (E2) 100 506 ± 20 +++ 12–19 100
Estrone (E1) 11 ± 8 490 ± 22 +++ ? 20
Estriol (E3) 10 ± 4 468 ± 30 +++ 8–18 3
Estetrol (E4) 0.5 ± 0.2 ? Inactive ? 1
17α-Estradiol 4.2 ± 0.8 ? ? ? ?
2-Hydroxyestradiol 24 ± 7 285 ± 8 +b 31–61 28
2-Methoxyestradiol 0.05 ± 0.04 101 Inactive ? 130
4-Hydroxyestradiol 45 ± 12 ? ? ? ?
4-Methoxyestradiol 1.3 ± 0.2 260 ++ ? 9
4-Fluoroestradiola 180 ± 43 ? +++ ? ?
2-Hydroxyestrone 1.9 ± 0.8 130 ± 9 Inactive 110–142 8
2-Methoxyestrone 0.01 ± 0.00 103 ± 7 Inactive 95–100 120
4-Hydroxyestrone 11 ± 4 351 ++ 21–50 35
4-Methoxyestrone 0.13 ± 0.04 338 ++ 65–92 12
16α-Hydroxyestrone 2.8 ± 1.0 552 ± 42 +++ 7–24 <0.5
2-Hydroxyestriol 0.9 ± 0.3 302 +b ? ?
2-Methoxyestriol 0.01 ± 0.00 ? Inactive ? 4
Notes: Values are mean ± SD or range. ER RBA =
endogenous
). b = Atypical uterotrophic effect which plateaus within 48 hours (estradiol's uterotrophy continues linearly up to 72 hours). Sources: See template.
Relative oral potencies of estrogens
Estrogen
HF
Tooltip Hot flashes
VETooltip Vaginal epithelium UCaTooltip Urinary calcium FSHTooltip Follicle-stimulating hormone LHTooltip Luteinizing hormone HDLTooltip High-density lipoprotein-CTooltip Cholesterol SHBGTooltip Sex hormone-binding globulin
CBG
Tooltip Corticosteroid-binding globulin
AGT
Tooltip Angiotensinogen
Liver
Estradiol 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Estrone ? ? ? 0.3 0.3 ? ? ? ? ?
Estriol 0.3 0.3 0.1 0.3 0.3 0.2 ? ? ? 0.67
Estrone sulfate ? 0.9 0.9 0.8–0.9 0.9 0.5 0.9 0.5–0.7 1.4–1.5 0.56–1.7
Conjugated estrogens 1.2 1.5 2.0 1.1–1.3 1.0 1.5 3.0–3.2 1.3–1.5 5.0 1.3–4.5
Equilin sulfate
? ? 1.0 ? ? 6.0 7.5 6.0 7.5 ?
Ethinylestradiol 120 150 400 60–150 100 400 500–600 500–600 350 2.9–5.0
Diethylstilbestrol ? ? ? 2.9–3.4 ? ? 26–28 25–37 20 5.7–7.5
Sources and footnotes
Notes: Values are ratios, with estradiol as standard (i.e., 1.0). Abbreviations: HF = Clinical relief of
liver proteins. Liver = Ratio of liver estrogenic effects to general/systemic estrogenic effects (hot flashes/gonadotropins
). Sources: See template.
Potencies of oral estrogens[data sources 1]
Compound Dosage for specific uses (mg usually)[a]
ETD[b] EPD[b] MSD[b] MSD[c] OID[c] TSD[c]
Estradiol (non-micronized) 30 ≥120–300 120 6 - -
Estradiol (micronized) 6–12 60–80 14–42 1–2 >5 >8
Estradiol valerate 6–12 60–80 14–42 1–2 - >8
Estradiol benzoate - 60–140 - - - -
Estriol ≥20 120–150[d] 28–126 1–6 >5 -
Estriol succinate - 140–150[d] 28–126 2–6 - -
Estrone sulfate 12 60 42 2 - -
Conjugated estrogens 5–12 60–80 8.4–25 0.625–1.25 >3.75 7.5
Ethinylestradiol 200 μg 1–2 280 μg 20–40 μg 100 μg 100 μg
Mestranol 300 μg 1.5–3.0 300–600 μg 25–30 μg >80 μg -
Quinestrol 300 μg 2–4 500 μg 25–50 μg - -
Methylestradiol - 2 - - - -
Diethylstilbestrol 2.5 20–30 11 0.5–2.0 >5 3
DES dipropionate - 15–30 - - - -
Dienestrol 5 30–40 42 0.5–4.0 - -
Dienestrol diacetate 3–5 30–60 - - - -
Hexestrol - 70–110 - - - -
Chlorotrianisene - >100 - - >48 -
Methallenestril - 400 - - - -
Sources and footnotes:
  1. ^ Dosages are given in milligrams unless otherwise noted.
  2. ^ a b c Dosed every 2 to 3 weeks
  3. ^ a b c Dosed daily
  4. ^ a b In divided doses, 3x/day; irregular and atypical proliferation.
Potencies and durations of natural estrogens by intramuscular injection
Estrogen Form Dose (mg) Duration by dose (mg)
EPD CICD
Estradiol Aq. soln. ? <1 d
Oil soln. 40–60 1–2 ≈ 1–2 d
Aq. susp. ? 3.5 0.5–2 ≈ 2–7 d; 3.5 ≈ >5 d
Microsph. ? 1 ≈ 30 d
Estradiol benzoate Oil soln. 25–35 1.66 ≈ 2–3 d; 5 ≈ 3–6 d
Aq. susp. 20 10 ≈ 16–21 d
Emulsion ? 10 ≈ 14–21 d
Estradiol dipropionate Oil soln. 25–30 5 ≈ 5–8 d
Estradiol valerate Oil soln. 20–30 5 5 ≈ 7–8 d; 10 ≈ 10–14 d;
40 ≈ 14–21 d; 100 ≈ 21–28 d
Estradiol benz. butyrate Oil soln. ? 10 10 ≈ 21 d
Estradiol cypionate Oil soln. 20–30 5 ≈ 11–14 d
Aq. susp. ? 5 5 ≈ 14–24 d
Estradiol enanthate
Oil soln. ? 5–10 10 ≈ 20–30 d
Estradiol dienanthate
Oil soln. ? 7.5 ≈ >40 d
Estradiol undecylate Oil soln. ? 10–20 ≈ 40–60 d;
25–50 ≈ 60–120 d
Polyestradiol phosphate Aq. soln. 40–60 40 ≈ 30 d; 80 ≈ 60 d;
160 ≈ 120 d
Estrone Oil soln. ? 1–2 ≈ 2–3 d
Aq. susp. ? 0.1–2 ≈ 2–7 d
Estriol Oil soln. ? 1–2 ≈ 1–4 d
Polyestriol phosphate Aq. soln. ? 50 ≈ 30 d; 80 ≈ 60 d
Notes and sources
Classification of estrogens and antiestrogens by receptor–estrogen complex retention
Class Examples RE complex retention Pharmacodynamic profile Uterine effects
Short-acting (a.k.a.
"weak" or "impeded")
Estriol • Short (1–4 hours) Single or once-daily injections: partial agonist or antagonist Early responsesa
Implant or multiple injections per day:
full agonist
Early and late responsesb
Long-acting A. EstradiolEstroneEthinylestradiolDiethylstilbestrolHexestrol Intermediate (6–24 hours) Single or once-daily injections: full agonist Early and late responses
B. ClomifeneNafoxidineNitromifeneTamoxifen Long (>24–48 hours) Single injection: agonist
Repeated injections: antagonist
Early and late responses
Footnotes: a = Early responses occur after 0–6 hours and include
hyperemia, amino acid and nucleotide uptake, activation of RNA polymerases I and II, and stimulation of induced protein, among others. b = Late responses occur after 6–48 hours and include cellular hypertrophy and hyperplasia and sustained RNA polymerase I and II activity, among others. Sources: [80][81][82][83][84][85][86]

Pharmacokinetics

Estriol (E3) levels after a single dose during continuous daily administration of 8 mg oral estriol (with or without a meal at 4 hours) or 0.5 mg vaginal estriol.[4] Note the second peak with oral estriol caused by consumption of a meal at 4 hours, which is due to enterohepatic recycling of the compound and a consequent resurgence in levels.[4]

Absorption

Estriol has significant

postmenopausal women, maximal levels of 65 pg/mL estriol and 60 ng/mL estriol conjugates were produced within an hour.[4] With continued daily administration, this increased to peak levels of 130 pg/mL estriol, whereas maximal levels of estriol conjugates remained at 60 ng/mL.[4] Levels of estriol rapidly decreased to low levels following occurrence of peak levels.[4] Consumption of a meal 4 hours after taking an oral dose of 8 mg estriol during continuous daily administration resulted in a second estriol peak 2 hours later of 120 pg/mL, with estriol levels declining slowly thereafter to about 25 pg/mL after 24 hours.[4]

The bioavailability of estriol is markedly increased with

vaginal administration compared to oral administration.[6] The relative bioavailability of oral estriol was found to be about 10% of that of vaginal estriol.[5] In accordance, a single dose of 8 mg oral estriol and of 0.5 mg vaginal estriol have been found to produce similar circulating concentrations of estriol.[4] It has been said that 0.5 to 1 mg vaginal estriol may be equivalent in clinical effect to 8 to 12 mg oral estriol.[18] The high bioavailability of vaginal estriol is due to rapid absorption and low metabolism in atrophic vaginal mucosa.[4] Vaginal estriol at typical clinical dosages results both in high local concentrations of estriol in the vagina and in systemic action.[4] Vaginal administration of low doses of 30 µg estriol and of higher doses of 0.5 and 1 mg estriol have been found to produce equivalent local effects in the vagina and improvement of vaginal symptoms, suggesting that a saturation of estrogenic effect of vaginal estriol has been reached in the vagina by a dose of only 30 µg estriol.[4] In contrast to higher doses of vaginal estriol however, 30 µg/day estriol is not associated with systemic effects.[4] Similarly, the use of 0.5 mg vaginal estriol twice a week instead of daily has been said to largely attenuate the systemic effects of estriol.[4] Whereas oral estriol results in high levels of estriol conjugates which greatly exceed those of unconjugated estriol, vaginal estriol has been found to produce levels of unconjugated estriol and estriol conjugates that are similar.[4]

The absorption of estrogens by the skin is described as low for estriol, moderate for estradiol, and high for estrone.

topical estriol.[6]

Rectal administration of estriol has been assessed in one study.[87] Administration of a rectal suppository containing 100 mg estriol resulted in estriol levels in pregnant women at term increasing by about 53%.[87] Estriol levels at term are normally between 5,000 and 20,000 pg/mL, which suggests that estriol levels may have increased following the suppository by about 5,000 to 10,000 pg/mL (precise levels were not provided).[88][89][90]

mucosa when taken orally, and in relation to this, is absorbed more slowly than is estriol.[4] Consequently, oral estriol succinate is a longer-acting form of estriol than oral estriol.[20] Instead of in the gastrointestinal tract, oral estriol succinate is cleaved into estriol mainly in the liver.[4] After a single 8 mg oral dose of estriol succinate, maximum levels of circulating estriol of 40 pg/mL are attained within 12 hours, and this increases up to 80 pg/mL with continued daily administration.[4]

Distribution

Similarly to estradiol, but unlike

affinity for SHBG, with only about 0.3% of the affinity of testosterone for this protein (or about 0.6% of that of estradiol).[4][92][93] Relative to estradiol, which is about 98% plasma protein-bound, a significantly greater fraction of estriol is unbound in the circulation and hence available for biological activity (2% relative to 8%, respectively).[93][4][18] This appears to account for the greater than expected biological activity of estriol relative to estradiol when considering its affinities for the estrogen receptors.[94]

Metabolism

Estriol is

16α-hydroxyestrone.[4] Estriol is an end-product of phase I estrogen metabolism and cannot be converted into estradiol or estrone.[4][52] The main metabolites of estriol are estrogen conjugates, including estriol sulfates, estriol glucuronides, and mixed estriol sulfate/glucuronide conjugates.[4] 16α-Hydroxyestrone is known to occur as a metabolite of estriol as well.[95][96][91]

The

Enterohepatic recycling may extend the duration of oral estriol.[18]

A single 1 to 2 mg dose of estriol in oil solution by intramuscular injection has a duration of about 3 or 4 days.

oil solution, have been found to maintain elevated levels of estriol for much longer amounts of time than oral or vaginal estriol, in the range of days to months.[5] These two estriol esters have not been marketed, but estriol acetate benzoate and estriol tripropionate are medically used estriol esters which are given via depot intramuscular injection and are long-acting similarly.[29] Polyestriol phosphate is an ester of estriol in the form of a polymer, and has a very long duration of action.[98][51]

Excretion

Estriol is

estriol 3-sulfate 16α-glucuronide (5.1%).[5][7] The metabolism and excretion of estriol in these animals closely resembled that which has been observed in humans.[7]

Chemistry

Structures of major endogenous estrogens
Chemical structures of major endogenous estrogens
Estrone (E1)
Estriol (E3)

Estriol, also known as 16α-hydroxyestradiol or as estra-1,3,5(10)-triene-3,16α,17β-triol, is a

estrin (estra-1,3,5(10)-triene) and triol (three hydroxyl groups).[99]

Analogues

A variety of

estriol esters that have been marketed for medical use, whereas estriol dihexanoate, estriol dipropionate, and estriol triacetate have not been introduced.[29][2] Quinestradol is the 3-cyclopentyl ether of estriol and has also been marketed.[29][2] Polyestriol phosphate, an ester of estriol in the form of a polymer, has been marketed previously as well.[98][100][51][101] These esters, ethers, and polymers are prodrugs of estriol.[4] Ethinylestriol and nilestriol are synthetic C17α ethynylated derivatives of estriol.[29][2] Ethinylestriol has not been marketed, but nilestriol, which is the 3-cyclopentyl ether of ethinylestriol and a prodrug of it, has been.[29][2]

History

Estriol was discovered in 1930.

transdermal formulations under brand names such as Estriol, Oestrosalve, Theelol, and Tridestrin.[106][107][108][25][109][110][24] In addition, conjugated estriol, containing mainly estriol glucuronide, was marketed in the 1930s, under the brand names Emmenin and Progynon.[106][108][25][109][111][112] They were the first orally active estrogen preparations to be introduced in medicine.[111][112] In contrast to estrone, free estriol was never introduced for use by intramuscular injection.[113] Estriol continues to be used medically today, widely throughout the world and in a variety of different formulations and brand names.[2][3][6]

Society and culture

Generic names

Estriol is the

INNTooltip International Nonproprietary Name, USPTooltip United States Pharmacopeia, BANTooltip British Approved Name, DCFTooltip Dénomination Commune Française, and JANTooltip Japanese Accepted Name.[29][2][114][3] It is pronounced /ˌɛstrl/ ESS-TREE-ohl.[1] Estriolo is the name of estriol in Italian[3] and estriolum is its name in Latin, whereas its name remains unchanged as estriol in Spanish, Portuguese, French, and German.[3][2] Oestriol, in which the "O" is silent, was the former BANTooltip British Approved Name of estriol and its name in British English,[29][114][2] but the spelling was eventually changed to estriol.[3]

Brand names

Estriol is or has been marketed under a variety of brand names throughout the world, including Aacifemine, Colpogyn, Elinol, Estriel, Estriol, Estriosalbe, Estrokad, Evalon, Gydrelle, Gynäsan, Gynest, Gynoflor (in combination with

lactobacilli), Incurin (veterinary), Klimax-E, OeKolp, Oestro-Gynaedron, Orgestriol, Ortho-Gynest, Ovesterin, Ovestin, Ovestinon, Ovestrion, Ovo-Vinces, Pausanol, Physiogine, Sinapause, Synapause, Synapause-E, Trophicrème, Vago-Med, Vacidox, and Xapro.[2][3]

Estriol for multiple sclerosis had the tentative brand name Trimesta but did not complete development and was never marketed.[117]

Availability

Estriol is marketed widely throughout the world, including in

over-the-counter in this country.[28]

Research

Estriol may have

immunomodulatory effects and has been of investigational interest in the treatment of multiple sclerosis and a number of other conditions.[18] Estriol succinate was under development for the treatment of multiple sclerosis in the United States and worldwide, and reached phase II clinical trials for this indication, but development was discontinued due to insufficient effectiveness.[117] It had the tentative brand name Trimesta.[117]

Veterinary use

Estriol is used in

estrogen deficiency in dogs.[14][15][16][17] Certain estrogens, like estradiol, can cause bone marrow suppression in dogs, which can be fatal, but estriol appears to pose less or possibly no risk.[17][120]

References

  1. ^ a b c Estriol. Dictionary.com.
  2. ^ .
  3. ^ a b c d e f g h i j k l "Estriol". Archived from the original on 2018-07-05. Retrieved 2018-05-20.
  4. ^
    S2CID 24616324
    .
  5. ^ .
  6. ^ .
  7. ^ .
  8. ^ .
  9. ^ . Estriol is considered a short-acting estrogen with a half-life of 5 hours.
  10. ^ .
  11. ^ . Because its half-life is about 20 minutes, unconjugated estriol rapidly reflects changes in estriol production.
  12. ^ .
  13. ^ .
  14. ^ .
  15. ^ .
  16. ^ .
  17. ^ .
  18. ^ .
  19. ^ .
  20. ^ .
  21. ^ .
  22. ^ .
  23. ^ .
  24. ^ .
  25. ^ .
  26. ^ .
  27. ^ "Estriol/Lactobacillus - Acerus Pharmaceuticals/Medinova -". AdisInsight. Springer Nature Switzerland AG.
  28. ^
    PMID 17627398
    .
  29. ^ .
  30. ^ Mazer C, Israel SL, Charny CW (1946). Diagnosis and treatment of menstrual disorders and sterility. Hoeber. p. 525. 8. PREPARATIONS OF ESTRIOL. Estriol is the least active of all commercially available natural estrogenic substances. A milligram of estriol yields approximately 350 Allen-Doisy rat units. Estriol (Abbott). Capsules containing 0.06, 0.12, and 0.24 mg. Estriol (Lilly). Puvules containing 0.06, 0.12, and 0.24 mg. Theelol (Parke-Davis). Capsules containing 0.06, 0.12, and 0.24 mg.
  31. . Estriol. Estriol (theelol) is trihydroxyestrin. It is a crystalline estrogenic steroid obtained from the urine of pregnant women. It is less actively estrogenic than estrone. Several pharmaceutical houses supply capsules containing 0.06 or 0.12 mg. These may be obtained as Theelol (Parke-Davis), Estriol (Abbott), and Estriol (Lilly).
  32. ^ Sollmann TH (1948). A manual of pharmacology and its applications to therapeutics and toxicology. W. B. Saunders. Estriol (Theelol), N.N.R.; characters and solubility as for estrone; considerably less potent. Marketed as capsules of 0.06, 0.12 and 0.24 mg. Dose, 0.06 to 0.12 mg. once to four times daily.
  33. ^ Council on Drugs (American Medical Association) (1950). New and Nonofficial Drugs. Lippincott. p. 322. Abbott Laboratories Capsules Estriol: 0.12 mg. and 0.24 mg. Eli Lilly and Company Pulvules Estriol: 0.06 mg., 0.12 mg. and 0.24 mg. Parke, Davis & Company Kapseals Theelol: 0.24 mg.
  34. ^ New York State Journal of Medicine. Medical Society of the State of New York. 1939. p. 1760.
  35. OCLC 35483492
    .
  36. ^ .
  37. .
  38. .
  39. .
  40. .
  41. ^ .
  42. ^ .
  43. .
  44. ^ .
  45. ^ .
  46. .
  47. .
  48. .
  49. .
  50. .
  51. ^ . The polymer of estradiol or estriol and phosphoric acid has an excellent depot action when given intramuscularly (polyestriol phosphate or polyestradiol phosphate) (Table 16). Phosphoric acid combines with the estrogen molecule at C3 and C17 to form a macromolecule. The compound is stored in the liver and spleen where the estrogen is steadily released by splitting off of the phosphate portion due to the action of alkaline phosphatase. [...] Conjugated estrogens and polyestriol and estradiol phosphate can also be given intravenously in an aqueous solution. Intravenous administration of ovarian hormones offers no advantages, however, and therefore has no practical significance. [...] The following duarations of action have been obtained with a single administration (WlED, 1954; LAURITZEN, 1968): [...] 50 mg polyestradiol phosphate ~ 1 month; 50 mg polyestriol phosphate ~ 1 month; 80 mg polyestriol phosphate ~ 2 months.
  52. ^ .
  53. .
  54. .
  55. .
  56. ^ .
  57. ^ .
  58. .
  59. .
  60. .
  61. .
  62. .
  63. .
  64. .
  65. .
  66. .
  67. .
  68. .
  69. .
  70. .
  71. .
  72. .
  73. .
  74. .
  75. . There is no doubt that the conversion of the endometrium with injections of both synthetic and native estrogenic hormone preparations succeeds, but the opinion whether native, orally administered preparations can produce a proliferation mucosa changes with different authors. PEDERSEN-BJERGAARD (1939) was able to show that 90% of the folliculin taken up in the blood of the vena portae is inactivated in the liver. Neither KAUFMANN (1933, 1935), RAUSCHER (1939, 1942) nor HERRNBERGER (1941) succeeded in bringing a castration endometrium into proliferation using large doses of orally administered preparations of estrone or estradiol. Other results are reported by NEUSTAEDTER (1939), LAUTERWEIN (1940) and FERIN (1941); they succeeded in converting an atrophic castration endometrium into an unambiguous proliferation mucosa with 120–300 oestradiol or with 380 oestrone.
  76. .
  77. ^ Martinez-Manautou J, Rudel HW (1966). "Antiovulatory Activity of Several Synthetic and Natural Estrogens". In Robert Benjamin Greenblatt (ed.). Ovulation: Stimulation, Suppression, and Detection. Lippincott. pp. 243–253.
  78. .
  79. .
  80. .
  81. .
  82. .
  83. .
  84. .
  85. .
  86. .
  87. ^ .
  88. .
  89. .
  90. .
  91. ^ .
  92. .
  93. ^ .
  94. .
  95. .
  96. .
  97. .
  98. ^ .
  99. .
  100. ^ .
  101. . In the Federal Republic of Germany between 10 and 20% of all climacteric women are on estrogen treatment. We have the following oral estrogens for a treatment. (t) Conjugated estrogens, (2) estradiol valerate, (3) ethinyl-estradiol and its cyclopentyl-enol ether, (4) stilbestrol, (5) ethinyl-estradiol-methyltestosterone, (6) estriol and estriol succinate, most of them as coated tablets. Several long acting injectable preparations are available: several esters of combined estradiol-testosterone, one of estradiol-dehydroepiandrosterone enanthate and a prolonged polyestriol phosphate are also available. Lastly, depot injections of estradiol- and stilbestrol-esters are on the market.
  102. ^ .
  103. ^ .
  104. ^ "Estetrol - Mithra Pharmaceuticals/Pantarhei Bioscience". AdisInsight. Springer Nature Switzerland AG.
  105. ^ "Drospirenone/Estetrol - Mithra Pharmaceuticals". AdisInsight. Springer Nature Switzerland AG.
  106. ^
    ISSN 0025-7125
    .
  107. .
  108. ^ .
  109. ^ .
  110. .
  111. ^ .
  112. ^ .
  113. .
  114. ^ .
  115. . 8075-01 (6628-01) 37452-43-0 R Polymeric ester with phosphoric acid S Klimadurin, Polyestriol phosphate, Polyostriolphosphat, Triodurin U Depot-estrogen
  116. . Polyoestriol Phosphate. [...] ingredient of Klimadurin. [...] Triodurin [...].
  117. ^ a b c "Estriol succinate - Synthetic Biologics". AdisInsight. Springer Nature Switzerland AG.
  118. .
  119. .
  120. .

Further reading