Manoalide

Source: Wikipedia, the free encyclopedia.
Manoalide
Names
Preferred IUPAC name
(5R)-5-Hydroxy-4-{(2R,6R)-6-hydroxy-5-[(3E)-4-methyl-6-(2,6,6-trimethylcyclohex-1-en-1-yl)hex-3-en-1-yl]-3,6-dihydro-2H-pyran-2-yl}furan-2(5H)-one
Identifiers
3D model (
JSmol
)
ChEBI
ChEMBL
ChemSpider
KEGG
UNII
  • InChI=1S/C25H36O5/c1-16(10-12-20-17(2)8-6-14-25(20,3)4)7-5-9-18-11-13-21(29-23(18)27)19-15-22(26)30-24(19)28/h7,11,15,21,23-24,27-28H,5-6,8-10,12-14H2,1-4H3/b16-7+/t21-,23-,24-/m1/s1 ☒N
    Key: FGJIDQWRRLDGDB-CPIXEKRISA-N ☒N
  • InChI=1/C25H36O5/c1-16(10-12-20-17(2)8-6-14-25(20,3)4)7-5-9-18-11-13-21(29-23(18)27)19-15-22(26)30-24(19)28/h7,11,15,21,23-24,27-28H,5-6,8-10,12-14H2,1-4H3/b16-7+/t21-,23-,24-/m1/s1
    Key: FGJIDQWRRLDGDB-CPIXEKRIBK
  • CC1=C(C(CCC1)(C)C)CC/C(=C/CCC2=CC[C@@H](O[C@H]2O)C3=CC(=O)O[C@H]3O)/C
Properties
C25H36O5
Molar mass 416.55034
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Manoalide is a

sponges, including the West Pacific species Luffariella variabilis.[1]
Its functions are made possible by the permanent blockage of phospholipase A2 and C[2] with lysine residues. This could be made possible through the functional groups incorporated in gamma-hydroxybutenolide, alpha-hydroxydihydropyran and the trimethylcyclohexenyl. The gamma-hydroxybutenolide ring is present in the reaction between manoalide and phospholipase A2, the hemiacetal in alpha-hydroxydihydropyran is needed for permanent binding and hydrophobic trimethylcyclohexenyl ring makes it possible for non-bonded interactions to interact between manoalide and phospholipase A2 to strengthen the reaction. [3] Due to its potential of permanent inhibition, it was made possible for it to take part in oral cancer[4] and Hepatitis C[5] research.

References

  1. ^ Brusca, Richard C. and Brusca, Gary J. Invertebrates. 2nd ed. Sinauer Associates, 2002. p. 202.
  2. OCLC 743217704.{{cite book}}: CS1 maint: others (link
    )
  3. .
  4. .
  5. .