Prostaglandin DP2 receptor

Source: Wikipedia, the free encyclopedia.
(Redirected from
CD294
)
PTGDR2
Identifiers
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Ensembl
UniProt
RefSeq (mRNA)

NM_004778

NM_009962

RefSeq (protein)

NP_004769

NP_034092

Location (UCSC)Chr 11: 60.85 – 60.86 MbChr 19: 10.91 – 10.92 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Prostaglandin D2 receptor 2 (DP2 or CRTH2) is a human

receptor ligands
has been associated with certain physiological and pathological responses, particularly those associated with allergy and inflammation, in animal models and certain human diseases.

Gene

The PTGDR2 gene is located on human chromosome 11 at position q12.2 (i.e. 11q12.2). It consists of two

Expression

DP2 was found to stimulate the directed movement or chemotaxis of human T-helper type 2 cells (see T helper cell#Th1/Th2 Model for helper T cells) by binding to a receptor initially termed GPR44 and thereafter CRTH2 (for Chemoattractant Receptor-homologous molecule expressed on T-Helper type 2 cells). In addition to these T helper cells, DP2 messenger RNA is also expressed by human basophils, eosinophils, a subpopulation of cytotoxic T cells (i.e. CD8+ T cells), thalamus, ovary, and spleen, and, in the central nervous system, by the frontal cortex, pons, hippocampus, and at lower levels, hypothalamus and caudate nucleus/putamen. These transcripts are also detected in fetal liver and thymus.[8][7][9]

Ligands

Activating ligands

The following standard prostaglandins have the following relative affinities and potencies in binding to and activating DP2: PGD2>>

indomethacin is weak in activating DP2.[9]

Inhibiting ligands

The following compounds are selective receptor antagonists of and thereby inhibit the activation of DP2: fevipiprant, setipiprant, ADC-3680, AZD-1981, MK-1029, MK-7246, OC-459, OC000459, QAV-680, and TM30089. Ramatroban and vidupiprant are non-selective (i.e. known to influence other receptors) antagonists of DP2.[9]

Mechanisms of cell activation

G protein-coupled receptors (GPCRs) such as DP2 are

cyclic AMP (cAMP) thereby down-regulating cAMP-responsive proteins involved in cell signalling.[10][11] Concurrently with the mobilization of these pathways, activated DP2 also mobilizes G protein-coupled receptor kinases (GRKs, GRK2, GRK3, and/or GRK6) and Arrestin-2 (also termed Arrestin beta 1 or β-arrestin). The GRKs, along with the DAG-activated PKCs, phosphorylate DP2 to promote its internalization while arrestin-2 inhibits DP2 from further activating heterotrimeric G proteins while also linking DP2 to elements, clathrin and clathrin adaptor AP2, of the receptor internalization machinery. These pathways render DP2 unable to mobilize heterotrimereic G proteins[12] thereby rendering the cell less sensitive or insensitive to further stimulation by DP ligands. The process, termed Homologous desensitization, serves as a physiological limiter of cell responses to DP2 activators.[12][13][14]

Function

Allergy

Ligands that activate DP2 stimulate the

CD8+ cells, although the contribution of this to the in vivo function of DP2 has not been clarified.[15]

PDP2 receptor antagonists have been shown to allergic reactions induced in the airways mice and sheep as well as the airways and nose of guinea pigs.[15]

Mice genetically engineered to be deficient in DP2 (i.e. DP2−/-) mice are defective in mounting asthmatic responses in models of: a) allergen-induced asthma, b) dermal allergy, c)

ACTH and cortisol release in response to inflammatory stimuli, and c) perception of pain caused by inflammation in peripheral tissues.[10][11][16] DP2−/- mice are also highly resistant to the gram (-) bacterial sepsis caused by cecal ligation and puncture; the protective effect was associated with lower bacterial load and lower production of pro-inflammatory cytokines (i.e. TNF-α, IL-6, and CCL3) and increased production of an anti-inflammatory cytokine (IL-10).[8]

Embryogenesis

Studies in Dp2 gene-deficient (i.e. Dp2−/-) mice indicate that DP2 is essential for controlling cell cycle genes in fetal testes which contribute to the arrest of mitotic process and to the differentiate of germ cells. This control involves, at least in part, the DP2-dependent activation of the male germ cell marker Nanos2 and the inhibition of meiosis through repression of Stra8.[17]

Human genomics studies

The 1544G-1651G

mRNA; this haplotype has been associated with an increased incidence of asthma in Chinese population and African but not Japanese sampling studies.[18][19] The rs11571288 C/G Single-nucleotide polymorphism (SNP) variant[20] of DP2 has been associated with an increase in the percentage of circulating eosinophils, an increase in the expression of DP2 by these cells, an enhanced rate of differentiation of precursor cells to Th2 cells in culture, enhanced Th2 cytokine (i.e. IL-4 and IL-13) production by these cells, and an increased incidence of asthma in a sampling of multi-ethnic Caucasian Canadians.[18][21]

Clinical studies

Allergic Diseases

Setipiprant (ACT-129968), a selective, orally active antagonist of the (DP2) receptor, proved to be well tolerated and reasonably effective in reducing allergen-induced airway responses in asthmatic patient clinical trials.[22][23] However, the drug, while supporting the concept that DP2 contributes to asthmatic disease, did not show sufficient advantage over existing drugs and was discontinued from further development for this application (see setipiprant).[24]

Patients with the chronic spontaneous urticarial form of hives exhibit significantly lower surface membrane expression of the DP22 receptor on their blood eosinophils and basophils, a result fully consistent with this receptor being initially activated and subsequently desensitization (refer to above section on "Mechanisms of cell activation").[25] The DP2 receptor antagonist, AZD1981, is in a phase 2 clinical trial for the treatment of chronic idiopathic urticarial.[26]

A randomized, partially-blinded, placebo-controlled, two-way crossover, proof of concept study comparing the efficacy of the DP2 receptor antagonist, QAV680, in the treatment of allergic rhinitis[27] and a study on the effectiveness of OC000459, a DP2 receptor antagonist, in reducing the exacerbation of asthma induced by experimentally-induced rhinovirus infection in subjects[28] has just been completed or is underway, respectively.

Other diseases and conditions

Baldness

Acting through DP2, PGD2 can inhibit hair growth, suggesting that this receptor is a potential target for bald treatment.

alopecia.[31]

See also

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000183134Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000034117Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ "Entrez Gene: GPR44 G protein-coupled receptor 44".
  6. ^ "PTGDR2 prostaglandin D2 receptor 2". Gene Resources NCBI.
  7. ^
    PMID 10036181
    .
  8. ^ .
  9. ^ a b c "DP2 receptor - Prostanoid receptors - IUPHAR/BPS Guide to PHARMACOLOGY". www.guidetopharmacology.org.
  10. ^
    PMID 18946232
    .
  11. ^ .
  12. ^ .
  13. .
  14. .
  15. ^ .
  16. .
  17. .
  18. ^ .
  19. .
  20. ^ "No items found - Gene - NCBI". www.ncbi.nlm.nih.gov.
  21. S2CID 10104511
    .
  22. .
  23. .
  24. .
  25. .
  26. ^ "Efficacy and Safety of Chemoattractant Receptor-homologous Molecule Expressed on T Helper Type 2 (CRTh2) Antagonist AZD1981 in Chronic Idiopathic Urticaria (CIU) Antihistamines - Full Text View - ClinicalTrials.gov". clinicaltrials.gov. 13 June 2017.
  27. ^ Clinical trial number NCT00784732 for "A Study to Compare the Efficacy of QAV680 Against Placebo in Treating Seasonal Allergic Rhinitis in an Environmental Exposure Chamber" at ClinicalTrials.gov
  28. ^ Clinical trial number NCT02660489 for "Effect of OC459 on the Response to Rhinovirus Challenge in Asthma" at ClinicalTrials.gov
  29. PMID 22440736
    .
  30. .
  31. ^ Clinical trial number 2A Study of Setipiprant Tablets in Androgenetic Alopecia in Males NCT02781311Phase 2A Study of Setipiprant Tablets in Androgenetic Alopecia in Males at ClinicalTrials.gov

Further reading

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

This page is based on the copyrighted Wikipedia article: CD294. Articles is available under the CC BY-SA 3.0 license; additional terms may apply.Privacy Policy