KMT2A

Source: Wikipedia, the free encyclopedia.
(Redirected from
MLL (gene)
)
KMT2A
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Ensembl
UniProt
RefSeq (mRNA)

NM_001197104
NM_005933
NM_024891

NM_001081049
NM_001357549

RefSeq (protein)

NP_001184033
NP_005924

NP_001344478

Location (UCSC)Chr 11: 118.44 – 118.53 MbChr 9: 44.71 – 44.79 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Histone-lysine N-methyltransferase 2A, also known as acute lymphoblastic leukemia 1 (ALL-1), myeloid/lymphoid or mixed-lineage leukemia 1 (MLL1), or zinc finger protein HRX (HRX), is an enzyme that in humans is encoded by the KMT2A gene.[5]

MLL1 is a histone

epigenetic
maintenance of transcriptional memory. Its role as an epigenetic regulator of neuronal function is an ongoing area of research.

Function

Transcriptional regulation

KMT2A gene encodes a transcriptional coactivator that plays an essential role in regulating gene expression during early development and

HOX genes
.

Transcriptome profiling after deletion of MLL1 in cortical neurons revealed decreased promoter-bound H3K4me3 peaks at 318 genes, with 31 of these having significantly decreased expression and promoter binding.[10] Among them were Meis2, a homeobox transcription factor critical for development of forebrain neurons[11][12] and Satb2, a protein involved in neuronal differentiation.[13]

Multiple chromosomal translocations involving this gene are the cause of certain

acute lymphoid leukemias and acute myeloid leukemias. Alternate splicing results in multiple transcript variants.[14]

Cognition and emotion

MLL1 has been shown to be an important epigenetic regulator of complex behaviors. Rodent models of MLL1 dysfunction in forebrain neurons showed that conditional deletion results in elevated anxiety and defective cognition. Prefrontal cortex-specific knockout of MLL1 results in the same phenotypes, as well as working memory deficits.[10]

Stem cells

MLL1 has been found to be an important regulator of

epiblast-derived stem cells, post-implantation epiblast derived stem cells which display pluripotency yet many recognizable differences from the traditional embryonic stem cells derived from inner cell mass prior to implantation. Suppression of MLL1 expression was shown to be adequate for inducing ESC-like morphology and behavior within 72 hours of treatment. It has been proposed that the small molecule inhibitor MM-401, which was used to inhibit MLL1, changes the distribution of H3K4me1, the single methylation of the histone H3 lysine 4, to be significantly downregulated at MLL1 targets thus leading to decreased expression of MLL1 targets, rather than a direct regulation of pluripotency core markers.[15]

Structure

Gene

KMT2A gene has 37

exons and resides on chromosome 11 at q23.[14]

Protein

KMT2A has over a dozen binding partners and is cleaved into two pieces, a larger N-terminal fragment, involved in gene repression, and a smaller C-terminal fragment, which is a transcriptional activator.[16] The cleavage, followed by the association of the two fragments, is necessary for KMT2A to be fully active. Like many other methyltransferases, the KMT2 family members exist in multisubunit nuclear complexes (human COMPASS), where other subunits also mediate the enzymatic activity.[17]

9aaTADs in the E protein family E2A and MLL binding to the KIX domain of CBP

Clinical significance

Abnormal H3K4 trimethylation has been implicated in several neurological disorders such as autism.

GAD67 downregulation in schizophrenia.[19]

MLL1 is required for the expression of senescence-associated secretory phenotype (SASP)-related genes and promotes increased inflammation.[21]

Rearrangements of the MLL1 gene are associated with aggressive acute leukemias, both lymphoblastic and myeloid.[22] Despite being an aggressive leukemia, the MLL1 rearranged sub-type had the lowest mutation rates reported for any cancer.[23]

Mutations in MLL1 cause

Wiedemann-Steiner syndrome and acute lymphoblastic leukemia.[24] The leukemia cells of up to 80 percent of infants with ALL-1 have a chromosomal rearrangement that fuses the MLL1 gene to a gene on a different chromosome.[23]

Interactions

MLL (gene) has been shown to

interact
with:

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000118058Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000002028Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. PMID 1720549
    .
  6. .
  7. .
  8. .
  9. .
  10. ^ .
  11. .
  12. .
  13. .
  14. ^ a b "Entrez Gene: KMT2A lysine (K)-specific methyltransferase 2A".
  15. PMID 26996599
    .
  16. .
  17. .
  18. ^ .
  19. ^ .
  20. .
  21. .
  22. .
  23. ^ .
  24. .
  25. ^ .
  26. .
  27. .
  28. ^ .
  29. .
  30. .

Further reading

External links