GLIS1

Source: Wikipedia, the free encyclopedia.
GLIS1
Identifiers
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Ensembl
UniProt
RefSeq (mRNA)

NM_147193
NM_001367484
NM_001390836
NM_001390837
NM_001390838

NM_147221

RefSeq (protein)

NP_671726
NP_001354413

NP_671754

Location (UCSC)Chr 1: 53.51 – 53.74 MbChr 4: 107.29 – 107.49 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Glis1 (Glis Family Zinc Finger 1) is gene encoding a

Mice whose Glis1 gene has been removed have no noticeable change to their phenotype.[8]

Structure

Gli1 in complex with DNA. The third, fourth and fifth zinc fingers of Gli1 are over 80% homologous to the zinc finger domain in Glis1, with fingers four and five making the most intimate interactions with DNA.[6][9]

Glis1 is an 84.3 kDa proline rich protein composed of 789 amino acids.[6] No crystal structure has yet been determined for Glis1, however it is homologous to other proteins in many parts of its amino acid sequence whose structures have been solved.

Zinc finger domain

Glis1 uses a

gene transcription. The domain interacts sequence specifically with the DNA, following the major groove along the double helix. It has the consensus sequence GACCACCCAC.[6] The individual zinc finger motifs are separated from one another by the amino acid sequence(T/S)GEKP(Y/F)X,[6] where X can be any amino acid and (A/B) can be either A or B. This domain is homologous to the zinc finger domain found in Gli1 and so is thought to interact with DNA in the same way.[6] The alpha helices of the fourth and fifth zinc fingers are inserted into the major groove and make the most extensive contact of all the zinc fingers with the DNA.[9][10] Very few contact are made by the second and third fingers and the first finger does not contact the DNA at all.[10] The first finger does make numerous protein-protein interactions with the second zinc finger, however.[9][10]

Termini

Glis1 has an activation domain at its C-terminus and a repressive domain at its N-terminus. The repressive domain is much stronger than the activation domain meaning transcription is weak. The activation domain of Glis1 is four times stronger in the presence of CaM kinase IV. This may be due to a coactivator. A proline-rich region of the protein is also found towards the N-terminal. The protein's termini are fairly unusual, and have no strong sequence similarity other proteins.[6]

Use in cell reprogramming

Glis1 can be used as one of the four factors used in reprogramming somatic cells to induced pluripotent stem cells.[7] The three transcription factors Oct3/4, Sox2 and Klf4 are essential for reprogramming but are extremely inefficient on their own, fully reprogramming roughly only 0.005% of the number of cells treated with the factors.[11] When Glis1 is introduced with these three factors, the efficiency of reprogramming is massively increased, producing many more fully reprogrammed cells. The transcription factor c-Myc can also be used as the fourth factor and was the original fourth factor used by Shinya Yamanaka who received the 2012 Nobel Prize in Physiology or Medicine for his work in the conversion of somatic cells to iPS cells.[12][13][14] Yamanaka's work allows a way of bypassing the controversy surrounding stem cells.[14]

Mechanism

Somatic cells are most often fully differentiated in order to perform a specific function, and therefore only express the genes required to perform their function. This means the genes that are required for differentiation to other types of cell are packaged within chromatin structures, so that they are not expressed.[15]

Glis1 reprograms cells by promoting multiple pro-reprogramming pathways.

precursor, preventing production of active let-7. Let-7 microRNAs reduce the expression of pro-reprogramming genes via RNA interference.[16][17] Glis1 is also able to directly associate with the other three reprogramming factors which may help their function.[7]

The result of the various changes in gene expression is the conversion of

nucleosomes, the complexes used to package DNA, are generally demethylated and acetylated 'unpacking' the DNA by neutralising the positive charge of the lysine residues on the N-termini of histones.[18]

Advantages over c-myc

Glis1 has a number of extremely important advantages over c-myc in cell reprogramming.

Disadvantages

  • Inhibition of Proliferation: Failure to stop Glis1 expression after reprogramming inhibits cell proliferation and ultimately leads to the death of the reprogrammed cell. Therefore, careful regulation of Glis1 expression is required.[20] This explains why Glis1 expression is switched off in embryos after they have started to divide.[7][20]

Roles in disease

Glis1 has been implicated to play a part in a number of diseases and disorders.

Psoriasis

Glis1 has been shown to be heavily up regulated in

Frizzled10, a receptor in the wnt signaling pathway.[24]

Late onset Parkinson's Disease

A certain allele of Glis1 which exists due to a

single nucleotide polymorphism, a change in a single nucleotide of the DNA sequence of the gene, has been implicated as a risk factor in the neurodegenerative disorder Parkinson's disease. The allele is linked to the late onset variety of Parkinson's, which is acquired in old age. The reason behind this link is not yet known.[25]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000174332Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000034762Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ "Entrez Gene: GLIS family zinc finger 1".
  6. ^
    PMID 12042312
    .
  7. ^ . AsianScientist.
  8. .
  9. ^ .
  10. ^ .
  11. .
  12. .
  13. .
  14. ^ a b "The Nobel Prize in Physiology or Medicine – 2012 Press Release". Nobel Media AB. 8 October 2012.
  15. ^ Ralston A, Shaw K (2008). "Gene Expression Regulates Cell Differentiation". Nature Education. 1 (1).
  16. PMID 19779035
    .
  17. .
  18. ^ .
  19. ^ .
  20. ^ .
  21. .
  22. .
  23. .
  24. .
  25. .
This page is based on the copyrighted Wikipedia article: GLIS1. Articles is available under the CC BY-SA 3.0 license; additional terms may apply.Privacy Policy