Helix-turn-helix

Source: Wikipedia, the free encyclopedia.
bacteriophage lambda employs two helix-turn-helix motifs (left; green) to bind DNA (right; blue and red). The λ repressor protein in this image is a dimer
.

Helix-turn-helix is a

Discovery

The discovery of the helix-turn-helix motif was based on similarities between several genes encoding

λ repressor, which were found to share a common 20–25 amino acid sequence that facilitates DNA recognition.[2][3][4][5]

Function

The helix-turn-helix motif is a DNA-binding motif. The recognition and binding to DNA by helix-turn-helix proteins is done by the two α helices, one occupying the

Van der Waals interactions with exposed bases. The other α helix stabilizes the interaction between protein and DNA, but does not play a particularly strong role in its recognition.[2] The recognition helix and its preceding helix always have the same relative orientation.[6]

Classification of helix-turn-helix motifs

Several attempts have been made to classify the helix-turn-helix motifs based on their structure and the spatial arrangement of their helices.[6][7][8] Some of the main types are described below.

Di-helical

The di-helical helix-turn-helix motif is the simplest helix-turn-helix motif. A fragment of Engrailed homeodomain encompassing only the two helices and the turn was found to be an ultrafast independently folding protein domain.[9]

Tri-helical

An example of this motif is found in the transcriptional activator Myb.[10]

Tetra-helical

The tetra-helical helix-turn-helix motif has an additional

bacterial transcription factors and the helix-turn-helix motif found in the TetR repressors.[11] Multihelical versions with additional helices also occur.[12]

Winged helix-turn-helix

The winged helix-turn-helix (wHTH) motif is formed by a 3-helical bundle and a 3- or 4-strand

beta-sheet scaffold arranged in the order α1-β1-β2-α2-α3-β3-β4 where the third helix is the DNA recognition helix.[13][14]

Other modified helix-turn-helix motifs

Other derivatives of the helix-turn-helix motif include the DNA-binding domain found in

multiple antibiotic resistance, which forms a winged helix-turn-helix with an additional C-terminal alpha helix.[8][15]

See also

References

Further reading

External links